Skip to main content

Atomistic Simulation of Nickel Surface and Interface Properties

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering '19

Abstract

This report describes the research conducted by use of the ForHLRI within the publicly funded project ’Kersolife100’, in which the long-term performance of a fully ceramic solid oxide fuel cell (SOFC) concept is investigated. The project aims at modeling and understanding the dominant degradation mechanisms in SOFCs so that the required lifetime of the SOFC-stacks can be ensured. One major cause of ageing is the unfavourable microstructural evolution of the nickel-based anode that occurs upon SOFC operation. The associated mechanisms are modeled by use of phase field methods within ’Kersolife100’. For a successful outcome, the availability of accurate material parameters is crucial, but until now not given. Complementary to experimental efforts, the ab-initio research activities of this year therefore focused on the determination of the relevant nickel surface and interface properties. By combining experimental and simulation results, a deeper understanding of the anode aging mechanism can be generated and the identification of counter measures can be guided. In this report, the current results of the ab-initio activities are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    Article  Google Scholar 

  2. E.A. Clark, R. Yeske, H.K. Birnbaum, The effect of hydrogen on the surface energy of nickel. Metall. Trans. A 11(11), 1903–1908 (1980)

    Article  Google Scholar 

  3. G.I. Csonka, J.P. Perdew, A. Ruzsinszky, P.H.T. Philipsen, S. Lebègue, J. Paier, O.A. Vydrov, J.G. Ángyán, Assessing the performance of recent density functionals for bulk solids. Phys. Rev. B 79, 155107 (2009)

    Article  Google Scholar 

  4. S. De Waele, K. Lejaeghere, M. Sluydts, S. Cottenier, Error estimates for density-functional theory predictions of surface energy and work function. Phys. Rev. B 94, 235418 (2016)

    Article  Google Scholar 

  5. R. Digilov, S. Zadumkin, V. Kumykov, K. Khokonov, Measurement of surface tension of refractory metals in solid state. Fiz. Met. Metalloved. 41, 979–982 (1976)

    Google Scholar 

  6. R.S. Elliott, This is a model driver for the morse pair potential shifted to zero energy at cutoff separation (2014), Online Accessed 07 Sept 2018

    Google Scholar 

  7. R.S. Elliott, This is a Ni morse model parameterization by girifalco and weizer using a high accuracy cutoff distance (2014) Online Accessed 07 Sept 2018

    Google Scholar 

  8. R.S. Elliott, EAM model driver with hermite cubic spline interpolation (2018) Online Accessed 28 Aug 2018

    Google Scholar 

  9. R.S. Elliott, E.B. Tadmor, Knowledgebase of interatomic models application programming interface (2011) Online; Accessed 28 Aug 2018

    Google Scholar 

  10. S.M. Foiles, M.I. Baskes, M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983–7991 (1986)

    Article  Google Scholar 

  11. S.M. Foiles, M.I. Baskes, M.S. Daw, Erratum: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 37, 10378–10378 (1988)

    Google Scholar 

  12. L.A. Girifalco, V.G. Weizer, Application of the Morse potential function to cubic metals. Phys. Rev. 114, 687–690 (1959)

    Article  Google Scholar 

  13. K.W. Jacobsen, P. Stoltze, J.K. Nørskov, A semi-empirical effective medium theory for metals and alloys. Surf. Sci. 366(2), 394–402 (1996)

    Article  Google Scholar 

  14. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  Google Scholar 

  15. G. Kresse, J. Furthmller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996)

    Article  Google Scholar 

  16. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993)

    Article  Google Scholar 

  17. G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994)

    Article  Google Scholar 

  18. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    Article  Google Scholar 

  19. A.H. Larsen, J.J. Mortensen, J. Blomqvist, I.E. Castelli, R. Christensen, M. DuAĆak, J. Friis, M.N. Groves, B. Hammer, C. Hargus, E.D. Hermes, P.C. Jennings, P.B. Jensen, J. Kermode, J.R. Kitchin, E.L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J.B. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiotz, O. Schaijtt, M. Strange, K.S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, K.W. Jacobsen, The atomic simulation environment—a python library for working with atoms. J. Phys.: Condens. Matter 29(27), 273002 (2017)

    Google Scholar 

  20. P.S. Maiya, J.M. Blakely, Surface self a diffusion and surface energy of nickel. J. Appl. Phys. 38(2), 698–704 (1967)

    Google Scholar 

  21. M. Mendelev, M. Kramer, S. Hao, K. Ho, C. Wang, Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy. Phil. Mag. 92(35), 4454–4469 (2012)

    Article  Google Scholar 

  22. M.I. Mendelev, Finnis-Sinclair potential for the Ni-Zr system developed by Mendelev et al. (2012) (2018) Online; Accessed 07 Sept2018

    Google Scholar 

  23. Y. Mishin, EAM Ni potential (2018) Online; Accessed 07 Sept 2018

    Google Scholar 

  24. Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59, 3393–3407 (1999)

    Article  Google Scholar 

  25. K. Momma, F. Izumi, VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44(6), 1272–1276 (2011)

    Article  Google Scholar 

  26. S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, G. Ceder, Python materials genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013)

    Article  Google Scholar 

  27. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  Google Scholar 

  28. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 78(7), 1396–1396 (1997)

    Google Scholar 

  29. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008)

    Article  Google Scholar 

  30. G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, B. Kozinsky, Aiida: automated interactive infrastructure and database for computational science. Comput. Mater. Sci. 111, 218–230 (2016)

    Article  Google Scholar 

  31. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  Google Scholar 

  32. T. Roth, The surface and grain boundary energies of iron, cobalt and nickel. Mater. Sci. Eng. 18(2), 183–192 (1975)

    Article  Google Scholar 

  33. M.D. Sangid, H. Sehitoglu, H.J. Maier, T. Niendorf, Grain boundary characterization and energetics of superalloys. Mater. Sci. Eng., A 527(26), 7115–7125 (2010)

    Article  Google Scholar 

  34. D. Scheiber, R. Pippan, P. Puschnig, L. Romaner, Ab initiocalculations of grain boundaries in bcc metals. Modell. Simul. Mater. Sci. Eng. 24(3), 035013 (2016)

    Article  Google Scholar 

  35. J. Schiotz, Effective medium theory as implemented in the ase/asap code (2015). Online; Accessed 07 Sept 2018

    Google Scholar 

  36. J. Schiotz, Standard effective medium theory potential for face-centered cubic metals as implemented in ase/asap (2015) Online; Accessed 07 Sept 2018

    Google Scholar 

  37. D.R. Stickle, J.P. Hirth, G. Meyrick, R. Speiser, A new technique for measuring the effects of oxygen activity on surface energies: Application to nickel. Metall. Trans. A 7(1), 71–74 (1976)

    Article  Google Scholar 

  38. E.B. Tadmor, R.S. Elliott, J.P. Sethna, R.E. Miller, C.A. Becker, The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM 63(7), 17–77 (2011)

    Article  Google Scholar 

  39. A. Tehranchi, A modification of the angelo et al. ni-h potential which enhances the binding energies of h atoms to the gbs in nickel (2018) Online; Accessed 28 Aug 2018

    Google Scholar 

  40. R. Tran, Z. Xu, B. Radhakrishnan, D. Winston, W. Sun, K.A. Persson, S.P. Ong, Surface energies of elemental crystals. Sci. Data 3 (2016)

    Google Scholar 

  41. W. Tyson, W. Miller, Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surf. Sci. 62(1), 267–276 (1977)

    Article  Google Scholar 

  42. L. Vitos, A. Ruban, H. Skriver, J. Kollar, The surface energy of metals. Surf. Sci. 411(1), 186–202 (1998)

    Google Scholar 

Download references

Acknowledgements

This work was performed on the computational resource ForHLR I funded by the Ministry of Science, Research and the Arts Baden-Württemberg and DFG (“Deutsche Forschungsgemeinschaft”) and conducted within the project “Kersolife100”, funded by the Federal Ministry for Economic Affairs and Energy (03ET6101A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anika Marusczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marusczyk, A., Ramakers, S., Kappeler, M., Haremski, P., Wieler, M., Lupetin, P. (2021). Atomistic Simulation of Nickel Surface and Interface Properties. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering '19. Springer, Cham. https://doi.org/10.1007/978-3-030-66792-4_13

Download citation

Publish with us

Policies and ethics