Skip to main content

Biological, Natural, and Synthetic 3D Matrices

  • Chapter
  • First Online:
Basic Concepts on 3D Cell Culture

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 1409 Accesses

What You Will Learn in This Chapter

The cultivation of mammalian cells in 3D is becoming increasingly important, as it becomes clear that cells display different morphology, signaling, gene and ultimately protein expression in comparison to conventional 2D cultivation. There is a wide variety of materials available for the 3D cultivation of cells, ranging from hydrogels that can be used to encapsulate cells, to porous 3D matrices, which can be seeded with cells. In this chapter, we will review the range of materials available for 3D cell culture and will discuss their preparation, advantages, and limitations. We structure the discussion along the different ways in which cells are introduced into the matrix. Also, we lightly touch upon fabrication methods for creating porous matrices without going into a general discussion of fabrication methods. The chapter concludes with aspects to consider when selecting materials for 3D cell cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(24):4195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu H, Lin J, Roy K. Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells. Biomaterials. 2006;27(36):5978–89.

    Article  CAS  PubMed  Google Scholar 

  3. Hishikawa K, et al. Gene expression profile of human mesenchymal stem cells during osteogenesis in three-dimensional thermoreversible gelation polymer. Biochem Biophys Res Commun. 2004;317(4):1103–7.

    Article  CAS  PubMed  Google Scholar 

  4. Imamura Y, et al. Comparison of 2D-and 3D-culture models as drug-testing platforms in breast cancer. Oncol Rep. 2015;33(4):1837–43.

    Article  CAS  PubMed  Google Scholar 

  5. Longati P, et al. 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer. 2013;13(1):95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pickl M, Ries C. Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab. Oncogene. 2009;28(3):461–8.

    Article  CAS  PubMed  Google Scholar 

  7. Haycock JW. 3D cell culture: a review of current approaches and techniques. In: 3D cell culture. Totowa, NJ: Springer; 2011. p. 1–15.

    Chapter  Google Scholar 

  8. Ruedinger F, et al. Hydrogels for 3D mammalian cell culture: a starting guide for laboratory practice. Appl Microbiol Biotechnol. 2015;99(2):623–36.

    Article  CAS  PubMed  Google Scholar 

  9. Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science. 2012;336(6085):1124–8.

    Article  CAS  PubMed  Google Scholar 

  10. Stegemann JP, Hong H, Nerem RM. Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype. J Appl Physiol. 2005;98(6):2321–7.

    Article  PubMed  Google Scholar 

  11. Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol. 2011;21(12):745–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ravi M, et al. 3D cell culture systems: advantages and applications. J Cell Physiol. 2015;230(1):16–26.

    Article  CAS  PubMed  Google Scholar 

  13. Carletti E, Motta A, Migliaresi C. Scaffolds for tissue engineering and 3D cell culture. In: 3D cell culture. Totowa, NJ: Springer; 2011. p. 17–39.

    Chapter  Google Scholar 

  14. Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev. 2008;14(1):61–86.

    Article  CAS  PubMed  Google Scholar 

  15. Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006;12(5):1197–211.

    Article  CAS  PubMed  Google Scholar 

  16. Chiu Y-C, et al. Generation of porous poly (ethylene glycol) hydrogels by salt leaching. Tissue Eng Part C Methods. 2010;16(5):905–12.

    Article  CAS  PubMed  Google Scholar 

  17. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773.

    Article  CAS  PubMed  Google Scholar 

  18. Lawrence BJ, Madihally SV. Cell colonization in degradable 3D porous matrices. Cell Adhes Migr. 2008;2(1):9–16.

    Article  Google Scholar 

  19. Griffon DJ, et al. A comparative study of seeding techniques and three-dimensional matrices for mesenchymal cell attachment. J Tissue Eng Regen Med. 2011;5(3):169–79.

    Article  CAS  PubMed  Google Scholar 

  20. Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng. 2009;103(4):655–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kirsch M, et al. Gelatin-Methacryloyl (GelMA) formulated with human platelet lysate supports mesenchymal stem cell proliferation and differentiation and enhances the hydrogel’s mechanical properties. Bioengineering. 2019;6(3):76.

    Article  CAS  PubMed Central  Google Scholar 

  22. Pepelanova I, et al. Gelatin-Methacryloyl (GelMA) hydrogels with defined degree of functionalization as a versatile toolkit for 3D cell culture and extrusion bioprinting. Bioengineering. 2018;5(3):55.

    Article  CAS  PubMed Central  Google Scholar 

  23. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–51.

    Article  CAS  PubMed  Google Scholar 

  24. Thiele J, et al. 25th anniversary article: designer hydrogels for cell cultures: a materials selection guide. Adv Mater. 2014;26(1):125–48.

    Article  CAS  PubMed  Google Scholar 

  25. Caliari SR, Burdick JA. A practical guide to hydrogels for cell culture. Nat Methods. 2016;13(5):405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chevallay B, Herbage D. Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy. Med Biol Eng Comput. 2000;38(2):211–8.

    Article  CAS  PubMed  Google Scholar 

  27. Dasgupta A, Mondal JH, Das D. Peptide hydrogels. RSC Adv. 2013;3(24):9117–49.

    Article  CAS  Google Scholar 

  28. Wang S, et al. Three-dimensional primary hepatocyte culture in synthetic self-assembling peptide hydrogel. Tissue Eng A. 2008;14(2):227–36.

    Article  CAS  Google Scholar 

  29. Patterson J, Martino MM, Hubbell JA. Biomimetic materials in tissue engineering. Mater Today. 2010;13(1–2):14–22.

    Article  CAS  Google Scholar 

  30. Andersen T, Auk-Emblem P, Dornish M. 3D cell culture in alginate hydrogels. Microarrays. 2015;4(2):133–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abreu FO, et al. Influence of the composition and preparation method on the morphology and swelling behavior of alginate–chitosan hydrogels. Carbohydr Polym. 2008;74(2):283–9.

    Article  CAS  Google Scholar 

  32. Weisel JW. The mechanical properties of fibrin for basic scientists and clinicians. Biophys Chem. 2004;112(2–3):267–76.

    Article  CAS  PubMed  Google Scholar 

  33. Schneider-Barthold C, et al. Hydrogels based on collagen and fibrin–frontiers and applications. BioNanoMaterials. 2016;17(1–2):3–12.

    Google Scholar 

  34. Willerth SM, et al. Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials. 2006;27(36):5990–6003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Teixeira LSM, et al. Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials. 2012;33(5):1281–90.

    Article  PubMed  CAS  Google Scholar 

  36. Orban JM, et al. Crosslinking of collagen gels by transglutaminase. J Biomed Mater Res A. 2004;68(4):756–62.

    Article  PubMed  CAS  Google Scholar 

  37. Yung C, et al. Transglutaminase crosslinked gelatin as a tissue engineering scaffold. J Biomed Mater Res Part A. 2007;83(4):1039–46.

    Article  CAS  Google Scholar 

  38. Hu B-H, Messersmith PB. Rational design of transglutaminase substrate peptides for rapid enzymatic formation of hydrogels. J Am Chem Soc. 2003;125(47):14298–9.

    Article  CAS  PubMed  Google Scholar 

  39. Khanmohammadi M, et al. Horseradish peroxidase-catalyzed hydrogelation for biomedical applications. Biomater Sci. 2018;6(6):1286–98.

    Article  CAS  PubMed  Google Scholar 

  40. Jin R, et al. Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering. Tissue Eng A. 2010;16(8):2429–40.

    Article  CAS  Google Scholar 

  41. Toh WS, et al. Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials. 2012;33(15):3835–45.

    Article  CAS  PubMed  Google Scholar 

  42. Aguilar M, San Román J. Smart polymers and their applications. Cambridge: Elsevier; 2014.

    Book  Google Scholar 

  43. Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm. 2008;68(1):34–45.

    Article  CAS  PubMed  Google Scholar 

  44. Bakaic E, et al. Injectable and degradable poly (oligoethylene glycol methacrylate) hydrogels with tunable charge densities as adhesive peptide-free cell scaffolds. ACS Biomater Sci Eng. 2017;4(11):3713–25.

    Article  PubMed  CAS  Google Scholar 

  45. Prabaharan M, Mano JF. Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol Biosci. 2006;6(12):991–1008.

    Article  CAS  PubMed  Google Scholar 

  46. Tatiana NM, et al. Hybrid collagen/pNIPAAM hydrogel nanocomposites for tissue engineering application. Colloid Polym Sci. 2018;296(9):1555–71.

    Article  CAS  Google Scholar 

  47. Shim WS, et al. Biodegradability and biocompatibility of a pH-and thermo-sensitive hydrogel formed from a sulfonamide-modified poly (ε-caprolactone-co-lactide)–poly (ethylene glycol)–poly (ε-caprolactone-co-lactide) block copolymer. Biomaterials. 2006;27(30):5178–85.

    Article  CAS  PubMed  Google Scholar 

  48. Jeong Y, et al. Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial. J Control Release. 2009;137(1):25–30.

    Article  CAS  PubMed  Google Scholar 

  49. Spicer CD, Pashuck ET, Stevens MM. Achieving controlled biomolecule–biomaterial conjugation. Chem Rev. 2018;118(16):7702–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Han J, Martinez BC, Ruan RR. Immobilization of Coleus blumei plant cells in temperature-sensitive hydrogel. Biotechnol Tech. 1996;10(5):359–62.

    Article  CAS  Google Scholar 

  51. Wilems TS, et al. Effects of free radical initiators on polyethylene glycol dimethacrylate hydrogel properties and biocompatibility. J Biomed Mater Res A. 2017;105(11):3059–68.

    Article  CAS  PubMed  Google Scholar 

  52. Anjum F, et al. Tough, semisynthetic hydrogels for adipose derived stem cell delivery for chondral defect repair. Macromol Biosci. 2017;17(5):1600373.

    Article  CAS  Google Scholar 

  53. Temenoff JS, et al. In vitro cytotoxicity of redox radical initiators for cross-linking of oligo (poly (ethylene glycol) fumarate) macromers. Biomacromolecules. 2003;4(6):1605–13.

    Article  CAS  PubMed  Google Scholar 

  54. Nuttelman CR, Tripodi MC, Anseth KS. In vitro osteogenic differentiation of human mesenchymal stem cells photoencapsulated in PEG hydrogels. J Biomed Mater Res A. 2004;68(4):773–82.

    Article  PubMed  CAS  Google Scholar 

  55. Sharma B, et al. In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plast Reconstr Surg. 2007;119(1):112–20.

    Article  CAS  PubMed  Google Scholar 

  56. Xiong Z, et al. Femtosecond laser induced densification within cell-laden hydrogels results in cellular alignment. Biofabrication. 2019;11(3):035005.

    Article  CAS  PubMed  Google Scholar 

  57. Tsang VL, et al. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J. 2007;21(3):790–801.

    Article  CAS  Google Scholar 

  58. Zhu W, et al. 3D bioprinting mesenchymal stem cell-laden construct with core–shell nanospheres for cartilage tissue engineering. Nanotechnology. 2018;29(18):185101.

    Article  PubMed  CAS  Google Scholar 

  59. Benoit DS, Anseth KS. Heparin functionalized PEG gels that modulate protein adsorption for hMSC adhesion and differentiation. Acta Biomater. 2005;1(4):461–70.

    Article  PubMed  Google Scholar 

  60. Shih H, Lin C-C. Photoclick hydrogels prepared from functionalized cyclodextrin and poly (ethylene glycol) for drug delivery and in situ cell encapsulation. Biomacromolecules. 2015;16(7):1915–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gong H, et al. 3D-engineered GelMA conduit filled with ECM promotes regeneration of peripheral nerve. J Biomed Mater Res A. 2020;108(3):805–13.

    Article  CAS  PubMed  Google Scholar 

  62. Gao Y, Jin X. Dual crosslinked methacrylated alginate hydrogel micron fibers and tissue constructs for cell biology. Mar Drugs. 2019;17(10):557.

    Article  CAS  PubMed Central  Google Scholar 

  63. Antunes J, et al. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening. Acta Biomater. 2019;94:392–409.

    Article  CAS  PubMed  Google Scholar 

  64. Hu X, Li D, Gao C. Chemically cross-linked chitosan hydrogel loaded with gelatin for chondrocyte encapsulation. Biotechnol J. 2011;6(11):1388–96.

    Article  CAS  PubMed  Google Scholar 

  65. Gevaert E, et al. Galactose-F unctionalized gelatin hydrogels improve the functionality of encapsulated Hepg2 cells. Macromol Biosci. 2014;14(3):419–27.

    Article  CAS  PubMed  Google Scholar 

  66. Poon YF, et al. Hydrogels based on dual curable chitosan-graft-polyethylene glycol-graft-methacrylate: application to layer-by-layer cell encapsulation. ACS Appl Mater Interfaces. 2010;2(7):2012–25.

    Article  CAS  PubMed  Google Scholar 

  67. Li L, et al. Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials. 2014;35(12):3903–17.

    Article  CAS  PubMed  Google Scholar 

  68. Prince E, et al. Patterning of structurally anisotropic composite hydrogel sheets. Biomacromolecules. 2018;19(4):1276–84.

    Article  CAS  PubMed  Google Scholar 

  69. Gendler E, Gendler S, Nimni M. Toxic reactions evoked by glutaraldehyde-fixed pericardium and cardiac valve tissue bioprosthesis. J Biomed Mater Res. 1984;18(7):727–36.

    Article  CAS  PubMed  Google Scholar 

  70. Korzhikov VA, et al. Water-soluble aldehyde-bearing polymers of 2-deoxy-2-methacrylamido-d-glucose for bone tissue engineering. J Appl Polym Sci. 2008;108(4):2386–97.

    Article  CAS  Google Scholar 

  71. Xu K, et al. Thiol-ene Michael-type formation of gelatin/poly (ethylene glycol) biomatrices for three-dimensional mesenchymal stromal/stem cell administration to cutaneous wounds. Acta Biomater. 2013;9(11):8802–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu ZQ, et al. Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation. Colloids Surf B: Biointerfaces. 2015;128:140–8.

    Article  CAS  PubMed  Google Scholar 

  73. Yu Y, et al. Thiolated gellan gum hydrogels as a peptide delivery system for 3D neural stem cell culture. Mater Lett. 2020;259:126891.

    Article  CAS  Google Scholar 

  74. Liu Z, et al. Spatiotemporally controllable and cytocompatible approach builds 3D cell culture matrix by photo-uncaged-thiol Michael addition reaction. Adv Mater. 2014;26(23):3912–7.

    Article  CAS  PubMed  Google Scholar 

  75. Mũnoz Z, Shih H, Lin C-C. Gelatin hydrogels formed by orthogonal thiol–norbornene photochemistry for cell encapsulation. Biomater Sci. 2014;2(8):1063–72.

    Article  PubMed  Google Scholar 

  76. Bian S, et al. The self-crosslinking smart hyaluronic acid hydrogels as injectable three-dimensional scaffolds for cells culture. Colloids Surf B: Biointerfaces. 2016;140:392–402.

    Article  CAS  PubMed  Google Scholar 

  77. Madl CM, Heilshorn SC. Bioorthogonal strategies for engineering extracellular matrices. Adv Funct Mater. 2018;28(11):1706046.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3+ 2] azide− alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc. 2004;126(46):15046–7.

    Article  CAS  PubMed  Google Scholar 

  79. Fu S, et al. Injectable hyaluronic acid/poly (ethylene glycol) hydrogels crosslinked via strain-promoted azide-alkyne cycloaddition click reaction. Carbohydr Polym. 2017;169:332–40.

    Article  CAS  PubMed  Google Scholar 

  80. Truong VX, et al. In situ-forming robust chitosan-poly (ethylene glycol) hydrogels prepared by copper-free azide–alkyne click reaction for tissue engineering. Biomater Sci. 2014;2(2):167–75.

    Article  CAS  PubMed  Google Scholar 

  81. Piluso S, et al. Sequential alkyne-azide cycloadditions for functionalized gelatin hydrogel formation. Eur Polym J. 2018;100:77–85.

    Article  CAS  Google Scholar 

  82. Owen SC, et al. Hyaluronic acid click hydrogels emulate the extracellular matrix. Langmuir. 2013;29(24):7393–400.

    Article  CAS  PubMed  Google Scholar 

  83. Nahm D, et al. A versatile biomaterial ink platform for the melt electrowriting of chemically-crosslinked hydrogels. Mater Horiz. 2020;7(3):928–33.

    Article  CAS  Google Scholar 

  84. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27(19):3675–83.

    CAS  PubMed  Google Scholar 

  85. Hoshiba T, et al. Decellularized matrices for tissue engineering. Expert Opin Biol Ther. 2010;10(12):1717–28.

    Article  CAS  PubMed  Google Scholar 

  86. Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med. 2011;17(8):424–32.

    Article  CAS  PubMed  Google Scholar 

  87. Carter P, Bhattarai N. Chapter 7. Bioscaffolds: fabrication and performance. In: Engineered biomimicry. Oxford: Elsevier; 2013.

    Google Scholar 

  88. Heijkants R, et al. Polyurethane scaffold formation via a combination of salt leaching and thermally induced phase separation. J Biomed Mater Res Part A. 2008;87(4):921–32.

    Article  CAS  Google Scholar 

  89. Nam YS, Park TG. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res. 1999;47(1):8–17.

    Article  CAS  PubMed  Google Scholar 

  90. Li S, Wang K, Li M. Morphology and pore size distribution of biocompatible interconnected porous poly (L-lactic acid) foams with nanofibrous structure prepared by thermally induced liquid–liquid phase separation. J Macromol Sci Part B. 2010;49(5):897–919.

    Article  CAS  Google Scholar 

  91. Averianov I, Korzhikov V, Tennikova T. Synthesis of poly (lactic acid) and the formation of poly (lactic acid)-based supraporous biofunctional materials for tissue engineering. Polym Sci Ser B. 2015;57(4):336–48.

    Article  CAS  Google Scholar 

  92. Zare-Mehrjardi N, et al. Differentiation of embryonic stem cells into neural cells on 3D poly (D, L-lactic acid) scaffolds versus 2D cultures. Int J Artif Organs. 2011;34(10):1012–23.

    Article  CAS  PubMed  Google Scholar 

  93. Ma PX, Zhang R. Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res. 1999;46(1):60–72.

    Article  CAS  PubMed  Google Scholar 

  94. Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials. 2011;32(36):9622–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kirsebom H, et al. Macroporous scaffolds based on chitosan and bioactive molecules. J Bioact Compat Polym. 2007;22(6):621–36.

    Article  CAS  Google Scholar 

  96. Zhao Y, Chen Z, Wu T. Cryogelation of alginate improved the freeze-thaw stability of oil-in-water emulsions. Carbohydr Polym. 2018;198:26–33.

    Article  CAS  PubMed  Google Scholar 

  97. Liu X, Ma PX. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials. 2009;30(25):4094–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kao H-H, et al. Preparation of gelatin and gelatin/hyaluronic acid cryogel scaffolds for the 3D culture of mesothelial cells and mesothelium tissue regeneration. Int J Mol Sci. 2019;20(18):4527.

    Article  CAS  PubMed Central  Google Scholar 

  99. Lozinsky VI. Cryogels on the basis of natural and synthetic polymers: preparation, properties and application. Russ Chem Rev. 2002;71(6):489–511.

    Article  CAS  Google Scholar 

  100. Park J, et al. Clinical application of bone morphogenetic protein-2 microcarriers fabricated by the cryopolymerization of gelatin methacrylate for the treatment of radial fracture in two dogs. In Vivo. 2018;32(3):575–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Repanas A, et al. Coaxial electrospinning as a process to engineer biodegradable polymeric scaffolds as drug delivery systems for anti-inflammatory and anti-thrombotic pharmaceutical agents. Clin Exp Pharmacol. 2015;5:192.

    Article  CAS  Google Scholar 

  102. Gryshkov O, et al. Advances in the application of electrohydrodynamic fabrication for tissue engineering. J Phys Conf Ser. 2019;1236:012024.

    Article  CAS  Google Scholar 

  103. Chu PK, Liu X. Biomaterials fabrication and processing handbook. Boca Raton, FL: CRC Press; 2008.

    Book  Google Scholar 

  104. Wang X, Ding B, Li B. Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today. 2013;16(6):229–41.

    Article  CAS  Google Scholar 

  105. Damanik FF, et al. Biological activity of human mesenchymal stromal cells on polymeric electrospun scaffolds. Biomater Sci. 2019;7(3):1088–100.

    Article  CAS  PubMed  Google Scholar 

  106. Hajzamani D, et al. Effect of engineered PLGA-gelatin-chitosan/PLGA-gelatin/PLGA-gelatin-graphene three-layer scaffold on adhesion/proliferation of HUVECs. Polym Adv Technol. 2020;31(9):1896–910.

    Article  CAS  Google Scholar 

  107. Unal S, et al. Glioblastoma cell adhesion properties through bacterial cellulose nanocrystals in polycaprolactone/gelatin electrospun nanofibers. Carbohydr Polym. 2020;233:115820.

    Article  CAS  PubMed  Google Scholar 

  108. Zhang Y, et al. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules. 2005;6(5):2583–9.

    Article  CAS  PubMed  Google Scholar 

  109. Kook Y-M, et al. Bi-compartmental 3D scaffolds for the co-culture of intervertebral disk cells and mesenchymal stem cells. J Ind Eng Chem. 2016;38:113–22.

    Article  CAS  Google Scholar 

  110. Majidi SS, et al. Wet electrospun alginate/gelatin hydrogel nanofibers for 3D cell culture. Int J Biol Macromol. 2018;118:1648–54.

    Article  CAS  PubMed  Google Scholar 

  111. Feng Z-Q, et al. The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function. Biomaterials. 2009;30(14):2753–63.

    Article  CAS  PubMed  Google Scholar 

  112. Khanmohammadi M, et al. Cell encapsulation in core-shell microcapsules through coaxial electrospinning system and horseradish peroxidase-catalyzed crosslinking. Biomed Phys Eng Express. 2020;6(1):015022.

    Article  PubMed  Google Scholar 

  113. Guo Y, et al. Modified cell-electrospinning for 3D myogenesis of C2C12s in aligned fibrin microfiber bundles. Biochem Biophys Res Commun. 2019;516(2):558–64.

    Article  CAS  PubMed  Google Scholar 

  114. Yeo M, Kim G. Fabrication of cell-laden electrospun hybrid scaffolds of alginate-based bioink and PCL microstructures for tissue regeneration. Chem Eng J. 2015;275:27–35.

    Article  CAS  Google Scholar 

  115. Yeo M, Kim GH. Anisotropically aligned cell-laden nanofibrous bundle fabricated via cell electrospinning to regenerate skeletal muscle tissue. Small. 2018;14(48):1803491.

    Article  CAS  Google Scholar 

  116. Kloxin AM, et al. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science. 2009;324(5923):59–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. DeForest CA, Anseth KS. Advances in bioactive hydrogels to probe and direct cell fate. Annu Rev Chem Biomol Eng. 2012;3:421–44.

    Article  CAS  PubMed  Google Scholar 

  118. Hammer JA, West JL. Dynamic ligand presentation in biomaterials. Bioconjug Chem. 2018;29(7):2140–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iliyana Pepelanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korzhikov-Vlakh, V., Pepelanova, I. (2021). Biological, Natural, and Synthetic 3D Matrices. In: Kasper, C., Egger, D., Lavrentieva, A. (eds) Basic Concepts on 3D Cell Culture . Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-66749-8_4

Download citation

Publish with us

Policies and ethics