Skip to main content

Non-Destructive and Label-Free Monitoring of 3D Cell Constructs

  • Chapter
  • First Online:
Basic Concepts on 3D Cell Culture

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 1339 Accesses

What You Will Learn in This Chapter

Monitoring cells in 3D culture is a big challenge in cell biology and biomedical research. In this chapter, we will demonstrate the great potential of Raman trapping microscopy coupled with multivariate statistical analysis, to monitor individual cells in 2D cultures and 3D tissues. We shortly describe the concept of spontaneous Raman spectroscopy using a bio-compatible 785 nm laser and the advantages of combined Optical Trapping. Furthermore, you will learn how to extract the rich chemical information from the Raman spectra using a unique Raman data analyzing software dedicated to biomedical needs. We show that Raman allows to monitor composition, functionality and quality of keratinocytes and fibroblasts during production as well as within the final graft. Furthermore, Raman allows to observe cell vitality within microspheres of mouse embryonic stem cells giving the potential to monitor drug penetration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pudlas M, Koch S, Bolwien C, Walles H. Raman spectroscopy as a tool for quality and sterility analysis for tissue engineering applications like cartilage transplants. Int J Artif Organs. 2010;33:228–37.

    Article  CAS  Google Scholar 

  2. Jensen EC. Use of fluorescent probes: their effect on cell biology and limitations. Anat Rec Adv Integr Anat Evol Biol. 2012;295:2031–6. https://doi.org/10.1002/ar.22602.

    Article  CAS  Google Scholar 

  3. Icha J, Weber M, Waters JC, Norden C. Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays. 2017;39:1700003. https://doi.org/10.1002/bies.201700003.

    Article  Google Scholar 

  4. Notingher I, Verrier S, Romanska H, et al. In situ characterisation of living cells by Raman spectroscopy. Spectroscopy. 2002;16:43–51. https://doi.org/10.1155/2002/408381.

    Article  CAS  Google Scholar 

  5. Pudlas M, Koch S, Bolwien C, et al. Raman spectroscopy: a noninvasive analysis tool for the discrimination of human skin cells. Tissue Eng Part C Methods. 2011;17:1027–40. https://doi.org/10.1089/ten.tec.2011.0082.

    Article  PubMed  Google Scholar 

  6. Charwat V, Schütze K, Holnthoner W, et al. Potential and limitations of microscopy and Raman spectroscopy for live-cell analysis of 3D cell cultures. J Biotechnol. 2015;205:70–81. https://doi.org/10.1016/j.jbiotec.2015.02.007.

    Article  CAS  PubMed  Google Scholar 

  7. Steinke M, Gross R, Walles H, et al. An engineered 3D human airway mucosa model based on an SIS scaffold. Biomaterials. 2014;35:7355–62. https://doi.org/10.1016/j.biomaterials.2014.05.031.

    Article  CAS  PubMed  Google Scholar 

  8. Raman CV, Krishnan KS. A new type of secondary radiation. Nature. 1928;121:501–2. https://doi.org/10.1038/121501c0.

    Article  CAS  Google Scholar 

  9. Talari ACS, Movasaghi Z, Rehman S, ur RI. Raman spectroscopy of biological tissues. Appl Spectrosc Rev. 2015;50:46–111. https://doi.org/10.1080/05704928.2014.923902.

    Article  CAS  Google Scholar 

  10. Pörtner R, editor. Animal cell biotechnology: methods and protocols, methods in molecular biology. Cham: Springer; 2020.

    Google Scholar 

  11. Ashkin A, Dziedzic JM, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams. Nature. 1987;330:769–71. https://doi.org/10.1038/330769a0.

    Article  CAS  PubMed  Google Scholar 

  12. Minsky M. Memoir on inventing the confocal scanning microscope: memoir on inventing the confocal scanning microscope. Scanning. 1988;10:128–38. https://doi.org/10.1002/sca.4950100403.

    Article  Google Scholar 

  13. Smith R, Wright KL, Ashton L. Raman spectroscopy: an evolving technique for live cell studies. Analyst. 2016;141:3590–600. https://doi.org/10.1039/C6AN00152A.

    Article  CAS  PubMed  Google Scholar 

  14. Conchello J-A, Lichtman JW. Optical sectioning microscopy. Nat Methods. 2005;2:920–31. https://doi.org/10.1038/nmeth815.

    Article  CAS  PubMed  Google Scholar 

  15. Bonnier F, Byrne HJ. Understanding the molecular information contained in principal component analysis of vibrational spectra of biological systems. Analyst. 2012;137:322–32. https://doi.org/10.1039/C1AN15821J.

    Article  CAS  PubMed  Google Scholar 

  16. Larouche D, Cantin-Warren L, Desgagné M, et al. Improved methods to produce tissue-engineered skin substitutes suitable for the permanent closure of full-thickness skin injuries. BioResearch Open Access. 2016;5:320–9. https://doi.org/10.1089/biores.2016.0036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. MacNeil S. Progress and opportunities for tissue-engineered skin. Nature. 2007;445:874–80. https://doi.org/10.1038/nature05664.

    Article  CAS  PubMed  Google Scholar 

  18. Marino D, Luginbuhl J, Scola S, et al. Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci Transl Med. 2014;6:221ra14. https://doi.org/10.1126/scitranslmed.3006894.

    Article  CAS  PubMed  Google Scholar 

  19. Per Oksvold MG. Tissue-specific protein expression in human cells, tissues and organs. J Proteomics Bioinform. 2010;03(10):294–301. https://doi.org/10.4172/jpb.1000153.

    Article  CAS  Google Scholar 

  20. Pontén F, Gry M, Fagerberg L, et al. A global view of protein expression in human cells, tissues, and organs. Mol Syst Biol. 2009;5:337. https://doi.org/10.1038/msb.2009.93.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Brauchle E, Thude S, Brucker SY, Schenke-Layland K. Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy. Sci Rep. 2015;4:4698. https://doi.org/10.1038/srep04698.

    Article  CAS  Google Scholar 

  22. Langhans SA. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol. 2018;9:6. https://doi.org/10.3389/fphar.2018.00006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ho C-S, Jean N, Hogan CA, et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat Commun. 2019;10:4927. https://doi.org/10.1038/s41467-019-12898-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krauß SD, Roy R, Yosef HK, et al. Hierarchical deep convolutional neural networks combine spectral and spatial information for highly accurate Raman-microscopy-based cytopathology. J Biophotonics. 2018;11:e201800022. https://doi.org/10.1002/jbio.201800022.

    Article  PubMed  Google Scholar 

  25. Talari ACS, Rehman S, Rehman IU. Advancing cancer diagnostics with artificial intelligence and spectroscopy: identifying chemical changes associated with breast cancer. Expert Rev Mol Diagn. 2019;19:929–40. https://doi.org/10.1080/14737159.2019.1659727.

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • Chapter (Raman Trapping Microscopy for Non-invasive Analysis of Biological Samples). Animal cell biotechnology: methods and protocols, methods in molecular biology. Cham: Springer; 2020.

    Google Scholar 

  • Steinke M, Gross R, Walles H, et al. An engineered 3D human airway mucosa model based on an SIS scaffold. Biomaterials. 2014;35:7355–62.

    Article  CAS  Google Scholar 

  • Charwat V, Schütze K, Holnthoner W, et al. Potential and limitations of microscopy and Raman spectroscopy for live-cell analysis of 3D cell cultures. J Biotechnol. 2015;205:70–81.

    Article  CAS  Google Scholar 

  • Pudlas M, Koch S, Bolwien C, Walles H. Raman spectroscopy as a tool for quality and sterility analysis for tissue engineering applications like cartilage transplants. Int J Artif Organs. 2010;33:228–37.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Prof. Dr. Ernst Reichmann, TBRU (University-Children’s Hospital Zürich, Switzerland) as well as Dr. Daniela Marino CUTISS AG (Zürich, Switzerland) for providing the skin cell samples. We would like also to thank Sarvesh Ghorpade, Dr. Heidi Kremling and Florian Zunhammer for their assistance. We thank also Dr. Ali Mirsaidi and Dr. Patrick Kugelmeier from Kugelmeiers Ltd. (Erlenbach, Switzerland) for providing the microspheres and for their great support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Schütze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yosef, H.K., Schütze, K. (2021). Non-Destructive and Label-Free Monitoring of 3D Cell Constructs. In: Kasper, C., Egger, D., Lavrentieva, A. (eds) Basic Concepts on 3D Cell Culture . Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-66749-8_10

Download citation

Publish with us

Policies and ethics