Skip to main content

Understanding Emotions in Electronic Auctions: Insights from Neurophysiology

Abstract

The design of electronic auction platforms is an important field of electronic commerce research. It requires not only a profound understanding of the role of human cognition in human bidding behavior but also of the role of human affect. In this chapter, we focus specifically on the emotional aspects of human bidding behavior and the results of empirical studies that have employed neurophysiological measurements in this regard. By synthesizing the results of these studies, we are able to provide a coherent picture of the role of affective processes in human bidding behavior along four distinct theoretical pathways.

References

  • Adam, M. T. P. (2010). Measuring Emotions in Electronic Auctions. Karlsruhe, DE: KIT Scientific Publishing.

    Google Scholar 

  • Adam, M. T. P., Gamer, M., Krämer, J., & Weinhardt, C. (2011a). Measuring emotions in electronic markets. In ICIS 2011 Proceedings (pp. 1–19). Shanghai, CN.

    Google Scholar 

  • Adam, M. T. P., Krämer, J., Jähnig, C., Seifert, S., & Weinhardt, C. (2011b). Understanding auction fever: A framework for emotional bidding. Electronic Markets, 21(3), 197–207. https://doi.org/10.1007/s12525-011-0068-9

    CrossRef  Google Scholar 

  • Adam, M. T. P., Krämer, J., & Weinhardt, C. (2012). Excitement up! Price down! Measuring emotions in Dutch auctions. International Journal of Electronic Commerce, 17(2), 7–40. https://doi.org/10.2753/jec1086-4415170201

    CrossRef  Google Scholar 

  • Adam, M. T. P., Krämer, J., & Müller, M. B. (2015). Auction fever! How time pressure and social competition affect bidders’ arousal and bids in retail auctions. Journal of Retailing, 91(3), 468–485. https://doi.org/10.1016/j.jretai.2015.01.003

    CrossRef  Google Scholar 

  • Adam, M. T. P., Astor, P. J., & Krämer, J. (2016). Affective images, emotion regulation and bidding behavior: An experiment on the influence of competition and community emotions in Internet auctions. Journal of Interactive Marketing, 35(1), 56–69. https://doi.org/10.1016/j.intmar.2015.12.002

    CrossRef  Google Scholar 

  • Adam, M. T. P., Eidels, A., Lux, E., & Teubner, T. (2017). Bidding behavior in Dutch auctions: Insights from a structured literature review. International Journal of Electronic Commerce, 21(3), 363–397. https://doi.org/10.1080/10864415.2016.1319222

    CrossRef  Google Scholar 

  • Adam, M. T. P., Ku, G., & Lux, E. (2019). Auction fever: The unrecognized effects of incidental arousal. Journal of Experimental Social Psychology, 80(1), 52–58. https://doi.org/10.1016/j.jesp.2018.07.009

    CrossRef  Google Scholar 

  • Ariely, D., & Simonson, I. (2003). Buying, bidding, playing, or competing? Value assessment and decision dynamics in online auctions. Journal of Consumer Psychology, 13(1–2), 113–123. https://doi.org/10.1207/S15327663JCP13-1&2_10

    CrossRef  Google Scholar 

  • Astor, P. J., Adam, M. T. P., Jähnig, C., & Seifert, S. (2011). Measuring regret: Emotional aspects of auction design. In ECIS 2011 Proceedings (pp. 1129–1140). Helsinki, FN.

    Google Scholar 

  • Astor, P. J., Adam, M. T. P., Jähnig, C., & Seifert, S. (2013a). The joy of winning and the frustration of losing: A psychophysiological analysis of emotions in first-price sealed-bid auctions. Journal of Neuroscience, Psychology, and Economics, 6(1), 14–30. https://doi.org/10.1037/a0031406

    CrossRef  Google Scholar 

  • Astor, P. J., Adam, M. T. P., Jerčić, P., Schaaff, K., & Weinhardt, C. (2013b). Integrating biosignals into information systems: A NeuroIS tool for improving emotion regulation. Journal of Management Information Systems, 30(3), 247–278. https://doi.org/10.2753/MIS0742-1222300309

    CrossRef  Google Scholar 

  • Bradley, M. M. (2007). Emotion and motivation. In L. G. Tassinary & G. G. Berntson (Eds.), Handbook of Psychophysiology (pp. 602–642). Cambridge, UK: Cambridge Univ. Press.

    Google Scholar 

  • Carare, O., & Rothkopf, M. (2005). Slow Dutch auctions. Management Science, 51(3), 365–373. https://doi.org/10.1287/mnsc.1040.0328

    CrossRef  Google Scholar 

  • Delgado, M. R., Schotter, A., Ozbay, E. Y., & Phelps, E. A. (2008). Understanding overbidding: Using the neural circuitry of reward to design economic auctions. Science, 321(5897), 1849–1852. https://doi.org/10.1126/science.1158860

    CrossRef  Google Scholar 

  • Engelbrecht-Wiggans, R., & Katok, E. (2008). Regret and feedback information in first-price sealed-bid auctions. Management Science, 54(4), 808–819.

    CrossRef  Google Scholar 

  • Hariharan, A., Adam, M. T. P., Teubner, T., & Weinhardt, C. (2016). Think, feel, bid: The impact of environmental conditions on the role of bidders’ cognitive and affective processes in auction bidding. Electronic Markets, 26(4), 339–355. https://doi.org/10.1007/s12525-016-0224-3

    CrossRef  Google Scholar 

  • Hariharan, A., Adam, M. T. P., Dorner, V., Lux, E., Müller, M. B., Pfeiffer, J., & Weinhardt, C. (2017). Brownie: A platform for conducting NeuroIS experiments. Journal of the Association for Information Systems, 18(4), 264–296. https://doi.org/10.17705/1jais.00457

    CrossRef  Google Scholar 

  • Jerčić, P., Astor, P. J., Adam, M. T. P., Hilborn, O., Schaaff, K., Lindley, C., … Eriksson, J. (2012). A serious game using physiological interfaces for emotion regulation training in the context of financial decision-making. In ECIS 2012 Proceedings (pp. 1–14). Barcelona, ES.

    Google Scholar 

  • Jung, D., Adam, M. T. P., Dorner, V., & Hariharan, A. (2017). A practical guide for human lab experiments in information systems research: A tutorial with Brownie. Journal of Systems and Information Technology, 19(3/4), 228–256. https://doi.org/10.1108/JSIT-06-2017-0049

    CrossRef  Google Scholar 

  • Katok, E., & Kwasnica, A. M. (2008). Time is money: The effect of clock speed on seller’s revenue in Dutch auctions. Experimental Economics, 11(4), 344–357. https://doi.org/10.1007/s10683-007-9169-x

    CrossRef  Google Scholar 

  • Ku, G., Malhotra, D., & Murnighan, J. K. (2005). Towards a competitive arousal model of decision-making: A study of auction fever in live and Internet auctions. Organizational Behavior and Human Decision Processes, 96(2), 89–103. https://doi.org/10.1016/j.obhdp.2004.10.001

    CrossRef  Google Scholar 

  • Lux, E., Adam, M. T. P., Dorner, V., Helming, S., Knierim, M. T., & Weinhardt, C. (2018). Live biofeedback as a user interface design element: A review of the literature. Communications of the Association for Information Systems, 43(1), 257–296. https://doi.org/10.17705/1CAIS.04318

    CrossRef  Google Scholar 

  • McAfee, R. P., & McMillan, J. (1987). Auctions and bidding. Journal of Economic Literature, 25(2), 699–738.

    Google Scholar 

  • Morana, S., Pfeiffer, J., & Adam, M. T. P. (2020). User assistance for intelligent systems. Business & Information Systems Engineering, 1–4. https://doi.org/10.1007/s12599-020-00640-5

  • Müller, M. B., Adam, M. T. P., Cornforth, D. J., Chiong, R., Krämer, J., & Weinhardt, C. (2016). Selecting physiological features for predicting bidding behavior in electronic auctions. In HICSS 2016 Proceedings (pp. 396–405). https://doi.org/10.1109/HICSS.2016.55

  • Murnighan, J. K. (2002). A very extreme case of the dollar auction. Journal of Management Education, 26(1), 56–69. https://doi.org/10.1177/105256290202600105

    CrossRef  Google Scholar 

  • Myers, D. G. (2004). Psychology (7th ed.). New York, NY, USA: Worth Publishers.

    Google Scholar 

  • Rick, S., & Loewenstein, G. (2008). The role of emotion in economic behavior. In M. Leis, J. M. Haviland-Jones, & L. F. Barrett (Eds.), Handbook of Emotions (pp. 138–156). New York, NY, USA: The Guilford Press.

    Google Scholar 

  • Riedl, R., Davis, F. D., & Hevner, A. R. (2014). Towards a NeuroIS research methodology: Intensifying the discussion on methods, tools, and measurement. Journal of the Association for Information Systems, 15(10), i–xxxv.

    Google Scholar 

  • Rouast, P. V., Adam, M. T. P., & Chiong, R. (2020). Deep learning for human affect recognition: Insights and new developments. IEEE Transactions on Affective Computing, 1–20. https://doi.org/10.1109/TAFFC.2018.2890471

  • Russel, J. (1980). A circumplex model of affect. Journal of Personality and Social Psychology1, 39(6), 1161–1178.

    CrossRef  Google Scholar 

  • Sigmund, K., Fehr, E., & Nowak, M. A. (2002). The economics of fair play. Scientific American, 286(1), 82–87.

    CrossRef  Google Scholar 

  • Smith, K., & Dickhaut, J. (2005). Economics and emotion: Institutions matter. Games and Economic Behavior, 52(2), 316–335. https://doi.org/10.1016/j.geb.2004.06.017

    MathSciNet  CrossRef  Google Scholar 

  • Teubner, T., Adam, M. T. P., & Riordan, R. (2015). The impact of computerized agents on immediate emotions, overall arousal and bidding behavior in electronic auctions. Journal of the Association for Information Systems, 16(10), 838–879. https://doi.org/10.17705/1jais.00457

    CrossRef  Google Scholar 

  • van den Bos, W., Talwar, A., & McClure, S. M. (2013). Neural correlates of reinforcement learning and social preferences in competitive bidding. Journal of Neuroscience, 33(5), 2137–2146. https://doi.org/10.1523/JNEUROSCI.3095-12.2013

    CrossRef  Google Scholar 

  • Zajonc, R. B. (1984). On the primacy of affect. American Psychologist, 39(2), 117–123.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Krämer .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and Permissions

Copyright information

© 2021 The Author(s)

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Adam, M.T.P., Krämer, J. (2021). Understanding Emotions in Electronic Auctions: Insights from Neurophysiology. In: , et al. Market Engineering . Springer, Cham. https://doi.org/10.1007/978-3-030-66661-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66661-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66660-6

  • Online ISBN: 978-3-030-66661-3

  • eBook Packages: Computer ScienceComputer Science (R0)