Skip to main content

ImPL-VIO: An Improved Monocular Visual-Inertial Odometry Using Point and Line Features

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12595))

Included in the following conference series:

  • 1549 Accesses


Most of the visual-inertial navigation systems (VINS) that use only point features usually work well in regular environment, but decay in low-texture scenes. Meanwhile, those systems rarely construct environmental map with structural information. In this paper, an improved tightly-coupled monocular visual-inertial odometry (ImPL-VIO) is developed. The whole system is composed of point and line feature tracking, inertial measurements processing, pose estimator and loop closure detection. For the better use of monocular line observations in the sliding window based pose estimator, an improved line triangulation algorithm is proposed after a detailed analysis of error sources. In addition, we, for the first time, employ the closest point (CP) representation for spatial lines to optimization-based VINS system, and derive the corresponding Jacobians analytically. Finally, simulation and real-world experiments are conducted to validate the proposed system.

Supported by the Program “Research on Basic and Key Technologies of Intelligent Robots" (No. X190021TB190), Ji Hua Laboratory, Guangdong, China.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. 1.


  1. Huang, G.: Visual-inertial navigation: a concise review. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 9572–9582. IEEE (2019)

    Google Scholar 

  2. Mourikis, A.I., Roumeliotis, S.I.: A multi-state constraint kalman filter for vision-aided inertial navigation. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 3565–3572. IEEE (2007)

    Google Scholar 

  3. Qin, T., Li, P., Shen, S.: Vins-mono: a robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 34(4), 1004–1020 (2018)

    Article  Google Scholar 

  4. Sibley, G., Matthies, L., Sukhatme, G.: Sliding window filter with application to planetary landing. J. Field Robot. 27, 587–608 (2010)

    Article  Google Scholar 

  5. Zhang, G., Lee, J.H., Lim, J., Suh, I.H.: Building a 3-d line-based map using stereo slam. IEEE Trans. Robot. 31(6), 1364–1377 (2015)

    Article  Google Scholar 

  6. Zhang, G., Suh, I.H.: Building a partial 3D line-based map using a monocular slam. In: 2011 IEEE International Conference on Robotics and Automation, pp. 1497–1502. IEEE (2011)

    Google Scholar 

  7. Bartoli, A., Sturm, P.: Structure-from-motion using lines: representation, triangulation, and bundle adjustment. Comput. Vis. Image Understanding 100(3), 416–441 (2005)

    Article  Google Scholar 

  8. Zuo, X., Xie, X., Liu, Y., Huang, G.: Robust visual slam with point and line features. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1775–1782. IEEE (2017)

    Google Scholar 

  9. He, Y., Zhao, J., Guo, Y., He, W., Yuan, K.: Pl-vio: tightly-coupled monocular visual-inertial odometry using point and line features. Sensors 18(4), 1159 (2018)

    Article  Google Scholar 

  10. Gomez-Ojeda, R., Moreno, F.A., Zuñiga-Noël, D., Scaramuzza, D., Gonzalez-Jimenez, J.: Pl-slam: a stereo slam system through the combination of points and line segments. IEEE Trans. Robot. 35(3), 734–746 (2019)

    Article  Google Scholar 

  11. Zhao, Wei., Qian, Kun., Ma, Zhewen., Ma, Xudong, Yu, Hai: Stereo visual SLAM using bag of point and line word Pairs. In: Yu, Haibin, Liu, Jinguo, Liu, Lianqing, Ju, Zhaojie, Liu, Yuwang, Zhou, Dalin (eds.) ICIRA 2019. LNCS (LNAI), vol. 11743, pp. 651–661. Springer, Cham (2019).

    Chapter  Google Scholar 

  12. Yang, Y., Geneva, P., Eckenhoff, K., Huang, G.: Visual-inertial odometry with point and line features. Macau, China, November 2019

    Google Scholar 

  13. Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., Achtelik, M.W., Siegwart, R.: The euroc micro aerial vehicle datasets. Int. J. Robot. Res. 35(10), 1157–1163 (2016)

    Article  Google Scholar 

  14. Lucas, B.D., et al.: An iterative image registration technique with an application to stereo vision (1981)

    Google Scholar 

  15. Von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 722–732 (2008)

    Article  Google Scholar 

  16. Zhang, L., Koch, R.: An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency. J. Visual Commun. Image Representation 24(7), 794–805 (2013)

    Article  Google Scholar 

  17. Rosten, E., Porter, R., Drummond, T.: Faster and better: a machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–119 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, H., Wang, H., Gan, Z., Deng, J. (2020). ImPL-VIO: An Improved Monocular Visual-Inertial Odometry Using Point and Line Features. In: Chan, C.S., et al. Intelligent Robotics and Applications. ICIRA 2020. Lecture Notes in Computer Science(), vol 12595. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66644-6

  • Online ISBN: 978-3-030-66645-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics