Skip to main content

Smart Healthcare Technologies for Massive Internet of Medical Things

  • Chapter
  • First Online:
Efficient Data Handling for Massive Internet of Medical Things

Part of the book series: Internet of Things ((ITTCC))

Abstract

Smarthealth care system is required to handle the large volume of data produced by the Massive Internet of Medical things. Smart healthcare system uses information and communication technology of IoT, data analytic, machine learning, deep learning, augmented reality, and cloud technologies to realize efficient, personalized, convenient health care systems. This chapter intended to give an overview, and the case of the above said ICT technologies for smart health applications. Smart healthcare systems are more patient-centric and enable them to get anywhere any health care service at an affordable cost. Machine learning and deep learning allow auto diagnosis of disease and predict the disease in an earlier stage in a systematic way from the acquired data set from the patient. Prediction of the disease increases the chance of curing the disease and reduces the Mortality rate. IoT enables smart continuous remote patient monitoring and medical data acquisition via an intelligent sensor system. Augmented Reality (AR) helps the surgeons to diagnose the disease accurately, performs surgery precisely with the help of real-time data of the patient quickly. AR also make surgeons precisely study patients’ anatomy through overlaying AR set augmentation of their scanned image on top of their body. Doctors able to visualize the internal part of the human body and organs without cutting the body. Cloud platform enables the patient data storage and retrieval of them anywhere at any time. Cloud computing facilitates run diagnosis and decision support software on ad hoc fashion and enables remote healthcare services. mHealth system utilizes mobile applications to easily reach the community of patients to provide health care services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Karamachoski, L. Gavrilovska, Framework for next generation of digital healthcare systems, in International Conference on Future Access Enablers of Ubiquitous and Intelligent Infrastructures, (Springer, Cham, 2019), pp. 12–24

    Google Scholar 

  2. C. Chakraborty, B. Gupta, S.K. Ghosh, A review on telemedicine-based WBAN framework for patient monitoring. Int J. Telemed. e-Health, Mary Ann Libert, Inc. 19(8), 619–626 (2013. ISSN: 1530-5627). https://doi.org/10.1089/tmj.2012.0215

    Article  Google Scholar 

  3. M. Chen, Y. Ma, Y. Li, D. Wu, Y. Zhang, C.-H. Youn, Wearable 2.0: Enabling human-cloud integration in next-generation healthcare systems. IEEE Commun. Mag. 55(1), 54–61 (2017)

    Article  Google Scholar 

  4. A. Awad Abdellatif, A. Mohamed, C. Fabiana Chiasserini, M. Tlili, A. Erbad, Edge computing for smart health: Context-aware approaches, opportunities, and challenges. IEEE Netw. 33(3), 196–203 (2019)

    Article  Google Scholar 

  5. F. Mansourypoor, S. Asadi, Development of a reinforcement learning-based evolutionary fuzzy rule-based system for diabetes diagnosis. Comput. Biol. Med. 91, 337–352 (2017)

    Article  Google Scholar 

  6. A.B. Levine, C. Schlosser, J. Grewal, R. Coope, S.J. Jones, S. Yip, Rise of the machines: Advances in deep learning for cancer diagnosis. Trends Cancer 5(3), 157–169 (2019)

    Article  Google Scholar 

  7. S. Sengupta, A. Singh, H.A. Leopold, T. Gulati, V. Lakshminarayanan, Ophthalmic diagnosis using deep learning with fundus images-a critical review. Artif. Intell. Med. 102, 101758 (2019)

    Article  Google Scholar 

  8. O.S. Lih, V. Jahmunah, T.R. San, E.J. Ciaccio, T. Yamakawa, M. Tanabe, M. Kobayashi, O. Faust, U.R. Acharya, Comprehensive electrocardiographic diagnosis based on deep learning. Artif. Intell. Med. 103, 101789 (2020)

    Article  Google Scholar 

  9. N. An, H. Ding, J. Yang, R. Au, T.F. Ang, Deep ensemble learning for Alzheimer’s disease classification. J. Biomed. Inform., 103411 (2020)

    Google Scholar 

  10. W. Mumtaz, A. Qayyum, A deep learning framework for automatic diagnosis of unipolar depression. Int. J. Med. Inform. 132, 103983 (2019)

    Article  Google Scholar 

  11. Q. Zheng, S.L. Furth, G.E. Tasian, Y. Fan, Computer-aided diagnosis of congenital abnormalities of the kidney and urinary tract in children based on ultrasound imaging data by integrating texture image features and deep transfer learning image features. J. Pediatr. Urol. 15(1), 75–e1 (2019)

    Article  Google Scholar 

  12. S.K. Lakshmanaprabu, S.N. Mohanty, S. Krishnamoorthy, J. Uthayakumar, K. Shankar, Online clinical decision support system using optimal deep neural networks. Appl. Soft Comput. 81, 105487 (2019)

    Article  Google Scholar 

  13. S. Fathi, M. Ahmadi, B. Birashk, A. Dehnad, Development and use of a clinical decision support system for the diagnosis of social anxiety disorder. Comput. Methods Prog. Biomed. 190, 105354 (2020)

    Article  Google Scholar 

  14. S. Khan, J.A. Shamsi, Health Quest: A generalized clinical decision support system with multi-label classification. J. King Saud Univ. Comput. Inf. Sci. (2018)

    Google Scholar 

  15. https://towardsdatascience.com/a-review-of-recent-reinforcment-learning-applications-to-healthcare-1f8357600407

  16. R. Padmanabhan, N. Meskin, W.M. Haddad, Reinforcement learning-based control of drug dosing for cancer chemotherapy treatment. Math. Biosci. 293, 11–20 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Yazdjerdi, N. Meskin, M. Al-Naemi, A.E. Al Moustafa, L. Kovács, Reinforcement learning-based control of tumor growth under anti-angiogenic therapy. Comput. Methods Prog. Biomed. 173, 15–26 (2019)

    Article  Google Scholar 

  18. A.E. Zade, H.S. Haghighi, M. Soltani, Reinforcement learning for optimal scheduling of Glioblastoma treatment with Temozolomide. Comput. Methods Prog. Biomed., 105443 (2020)

    Google Scholar 

  19. R. Padmanabhan, N. Meskin, W.M. Haddad, Optimal adaptive control of drug dosing using integral reinforcement learning. Math. Biosci. 309, 131–142 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Escandell-Montero, M. Chermisi, J.M. Martinez-Martinez, J. Gomez-Sanchis, C. Barbieri, E. Soria-Olivas, F. Mari, et al., Optimization of anemia treatment in hemodialysis patients via reinforcement learning. Artif. Intell. Med. 62(1), 47–60 (2014)

    Article  Google Scholar 

  21. C. Shen, Y. Gonzalez, L. Chen, D. Nguyen, X. Jia, Automatic treatment planning in a human-like manner: Operating treatment planning systems by a deep reinforcement learning-based virtual treatment planner. Int. J. Radiat. Oncol. Biol. Phys. 105(1), S256 (2019)

    Article  Google Scholar 

  22. Z. Liu, C. Yao, H. Yu, T. Wu, Deep reinforcement learning with its application for lung cancer detection in medical Internet of Things. Futur. Gener. Comput. Syst. 97, 1–9 (2019)

    Article  Google Scholar 

  23. M. Tejedor, A.Z. Woldaregay, F. Godtliebsen, Reinforcement learning application in diabetes blood glucose control: A systematic review. Artif. Intell. Med., 101836 (2020)

    Google Scholar 

  24. S.R. Islam, D. Kwak, M.H. Kabir, M. Hossain, K.-S. Kwak, The Internet of Things for health care: A comprehensive survey. IEEE Access 3, 678–708 (2015)

    Article  Google Scholar 

  25. H. Zhu, C.K. Wu, C.H. Koo, Y.T. Tsang, Y. Liu, H.R. Chi, K.-F. Tsang, Smart healthcare in the era of Internet-of-Things. IEEE Consum. Electron. Mag. 8(5), 26–30 (2019)

    Article  Google Scholar 

  26. A.P. Muhammad, M.U. Akram, M.A. Khan, Survey-based analysis of Internet of Things-based architectural framework for hospital management system, in 2015 13th International Conference on Frontiers of Information Technology (FIT), (IEEE, 2015), pp. 271–276

    Chapter  Google Scholar 

  27. S.K. Routray, S. Anand, Narrowband IoT for healthcare, in 2017 International Conference on Information Communication and Embedded Systems (ICICES), (IEEE, 2017), pp. 1–4

    Google Scholar 

  28. H. Rajini, A comprehensive survey on Internet of Things-based healthcare services and its applications, in Proceedings of the Third International Conference on Computing Methodologies and Communication, (IEEE, 2019), pp. 483–487

    Google Scholar 

  29. S. Durga, R. Nag, E. Daniel, Survey on machine learning and deep learning algorithms used in Internet of Things (IoT) healthcare, in 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), (IEEE, 2019), pp. 1018–1022

    Chapter  Google Scholar 

  30. V.M. Rohokale, N.R. Prasad, R. Prasad, A cooperative Internet of Things (IoT) for rural healthcare monitoring and control, in 2011 2nd International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE), (IEEE, 2011), pp. 1–6

    Google Scholar 

  31. M. Zheng, P.X. Liu, R. Gravina, G. Fortino, An emerging wearable world: New gadgetry produces a rising tide of changes and challenges. IEEE Syst. Man Cybern. Mag. 4(4), 6–14 (2018)

    Article  Google Scholar 

  32. R. Gravina, P. Alinia, H. Ghasemzadeh, G. Fortino, Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges. Inf. Fusion 35, 68–80 (2017)

    Article  Google Scholar 

  33. G. Fortino, R. Giannantonio, R. Gravina, P. Kuryloski, R. Jafari, Enabling effective programming and flexible management of efficient body sensor network applications. IEEE Trans. Human Mach. Syst. 43(1), 115–133 (2012)

    Article  Google Scholar 

  34. G. Fortino, A. Guerrieri, F. Bellifemine, R. Giannantonio, Platform-independent development of collaborative wireless body sensor network applications: SPINE2, in 2009 IEEE International Conference on Systems, Man and Cybernetics, (IEEE, 2009, October), pp. 3144–3150

    Chapter  Google Scholar 

  35. G. Fortino, A. Guerrieri, F.L. Bellifemine, R. Giannantonio, SPINE2: Developing BSN applications on heterogeneous sensor nodes, in 2009 IEEE International Symposium on Industrial Embedded Systems, (IEEE, 2009, July), pp. 128–131

    Chapter  Google Scholar 

  36. S. Iyengar, F.T. Bonda, R. Gravina, A. Guerrieri, G. Fortino, A. Sangiovanni-Vincentelli, A framework for creating healthcare monitoring applications using wireless body sensor networks, in Proceedings of the ICST 3rd International Conference on Body Area Networks, (2008, March), pp. 1–2

    Google Scholar 

  37. Z. Alansari, S. Soomro, M.R. Belgaum, S. Shamshirband, The rise of Internet of Things (IoT) in big healthcare data: Review and open research issues, in Progress in Advanced Computing and Intelligent Engineering, (Springer, Singapore, 2018), pp. 675–685

    Chapter  Google Scholar 

  38. V. Mehta, H. Chugh, P. Banerjee, et al., Applications of augmented reality in emerging health diagnostics: A survey, in 2018 International Conference on Automation and Computational Engineering (ICACE), (IEEE, 2018), pp. 45–51

    Chapter  Google Scholar 

  39. M. Eckert, J.S. Volmerg, C.M. Friedrich, Augmented reality in medicine: Systematic and bibliographic review. JMIR mHealth uHealth 7(4), e10967 (2019)

    Article  Google Scholar 

  40. R. Umeda, M.A. Seif, H. Higa, Y. Kuniyoshi, A medical training system using augmented reality, in 2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), (IEEE, 2017), pp. 146–149

    Chapter  Google Scholar 

  41. Y. Shelke, C. Chakraborty, Augmented reality and virtual reality transforming spinal imaging landscape: A feasibility study. IEEE Comput. Graph. Appl. (2020)

    Google Scholar 

  42. M. Weng, L. Huang, C. Feng, F. Gao, H. Lin, Electronic medical record system based on augmented reality, in 2017 12th International Conference on Computer Science and Education (ICCSE), (IEEE, 2017), pp. 753–756

    Chapter  Google Scholar 

  43. K. Rahul, V.P.D. Raj, K. Srinivasan, N. Deepa, N.S. Kumar, A study on virtual and augmented reality in real-time surgery, in 2019 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), (IEEE, 2019), pp. 1–2

    Google Scholar 

  44. A. Palanica, M.J. Docktor, A. Lee, Y. Fossat, Using mobile virtual reality to enhance medical comprehension and satisfaction in patients and their families. Perspect. Med. Educ. 8(2), 123–127 (2019)

    Article  Google Scholar 

  45. K. Klinker, M. Wiesche, H. Krcmar, Digital transformation in health care: Augmented reality for hands-free service innovation. Inf. Syst. Front., 1–13 (2019)

    Google Scholar 

  46. T. Ermakova, J. Huenges, K. Erek, R. Zarnekow, Cloud computing in healthcare–a literature review on current state of research, Jan 2013

    Google Scholar 

  47. N. Reddy, U. Reddy, Study of cloud computing in healthcare industry, arXiv preprint arXiv:1402.1841, (2014)

    Google Scholar 

  48. G. Fortino, D. Parisi, V. Pirrone, G. Di Fatta, BodyCloud: A SaaS approach for community body sensor networks. Futur. Gener. Comput. Syst. 35, 62–79 (2014)

    Article  Google Scholar 

  49. R. Gravina, C. Ma, P. Pace, G. Aloi, W. Russo, W. Li, G. Fortino, Cloud-based activity-aaService cyber–physical framework for human activity monitoring in mobility. Futur. Gener. Comput. Syst. 75, 158–171 (2017)

    Article  Google Scholar 

  50. R. Cioffi, M. Travaglioni, G. Piscitelli, A. Petrillo, F. De Felice, Artificial intelligence and machine learning applications in smart production: Progress, trends, and directions. Sustainability 12(2), 492 (2020)

    Article  Google Scholar 

  51. V. Radhamani, G. Dalin, Significance of artificial intelligence and machine learning techniques in smart-cloud computing: A review. Int. J. Soft Comput. Eng. (2019)

    Google Scholar 

  52. D. Pop, Machine learning and cloud computing: Survey of distributed and SaaS solutions, arXiv preprint arXiv:1603.08767, (2016)

    Google Scholar 

  53. G. Fortino, G. Di Fatta, M. Pathan, A.V. Vasilakos, Cloud-assisted body area networks: State-of-the-art and future challenges. Wirel. Netw. 20(7), 1925–1938 (2014)

    Article  Google Scholar 

  54. D. Bhamare, T. Salman, M. Samaka, A. Erbad, R. Jain, Feasibility of supervised machine learning for cloud security, in 2016 International Conference on Information Science and Security (ICISS), (IEEE, 2016), pp. 1–5

    Google Scholar 

  55. V. Koufi, F. Malamateniou, G. Vassilacopoulos, Ubiquitous access to cloud emergency medical services, in Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine, (IEEE, 2010), pp. 1–4

    Google Scholar 

  56. X. Qi, H. Kim, F. Xing, M. Parashar, D.J. Foran, L. Yang, The analysis of image feature robustness using comet cloud. J. Pathol. Inform. 3 (2012)

    Google Scholar 

  57. K.K. Wong, G. Fortino, D. Abbott, Deep learning-based cardiovascular image diagnosis: A promising challenge. Futur. Gener. Comput. Syst. 110, 802–811 (2020)

    Article  Google Scholar 

  58. F. Piccialli, V. Di Somma, F. Giampaolo, S. Cuomo, G. Fortino, A survey on deep learning in medicine: Why, how and when? Inf. Fusion 66, 111–137

    Google Scholar 

  59. R. Xu, G. Mei, G. Zhang, P. Gao, A. Pepe, J. Li, Tpm: Cloud-based tele- ptsd monitor using multi-dimensional information. Stud. Health Technol. Inform. 184, 471–477 (2013)

    Google Scholar 

  60. K.C. Tseng, C.-C. Wu, An expert fitness diagnosis system based on elastic cloud computing. Sci. World J. 2014, 981207 (2014)

    Article  Google Scholar 

  61. C. Low, Y.H. Chen, Criteria for the evaluation of a cloud-based hospital information system outsourcing provider. J. Med. Syst. 36(6), 3543–3553 (2012)

    Article  Google Scholar 

  62. M. Nkosi, F. Mekuria, Cloud computing for enhanced mobile health applications, in 2010 IEEE Second International Conference on Cloud Computing Technology and Science, (IEEE, 2010), pp. 629–633

    Chapter  Google Scholar 

  63. D. Parsons, J.L. Robar, D. Sawkey, A Monte Carlo investigation of low-z target image quality generated in a linear accelerator using Varian’s VirtuaLinaca. Med. Phy. 41(2) (2014)

    Google Scholar 

  64. B.E. Dixon, L. Simonaitis, H.S. Goldberg, M.D. Paterno, M. Schaeffer, T. Hongsermeier, A. Wright, B. Middleton, A pilot study of distributed knowledge management and clinical decision support in the cloud. Artif. Intell. Med. 59(1), 45–53 (2013)

    Article  Google Scholar 

  65. G. Karageorgos, I. Andreadis, K. Psychas, G. Mourkousis, A. Kiourti, G. Lazzi, K.S. Nikita, The promise of mobile technologies for the health care system in the developing world: A systematic review. IEEE Rev. Biomed. Eng. 12, 100–122 (2018)

    Article  Google Scholar 

  66. M.Z. Alam, M.R. Hoque, W. Hu, Z. Barua, Factors influencing the adoption of mHealth services in a developing country: A patient-centric study. Int. J. Inf. Manag. 50, 128–143 (2020)

    Article  Google Scholar 

  67. A.R. Fekr, M. Janidarmian, K. Radecka, Z. Zilic, Respiration disorders classification with informative features for m-health applications. IEEE J. Biomed. Health Inform. 20(3), 733–747 (2015)

    Article  Google Scholar 

  68. E.S. Leichman, R.A. Gould, A.A. Williamson, R.M. Walters, J.A. Mindell, Effectiveness of an mHealth intervention for infant sleep disturbances. Behav. Ther. (2020)

    Google Scholar 

  69. S.R. Khan, M. Sikandar, A. Almogren, I.U. Din, A. Guerrieri, G. Fortino, IoMT-based computational approach for detecting brain tumor. Futur. Gener. Comput. Syst. 109, 360–367 (2020)

    Article  Google Scholar 

  70. R. Chatterjee, T. Maitra, S.H. Islam, M.M. Hassan, A. Alamri, G. Fortino, A novel machine learning-based feature selection for motor imagery EEG signal classification in Internet of Medical Things environment. Futur. Gener. Comput. Syst. 98, 419–434 (2019)

    Article  Google Scholar 

  71. W.N. Ismail, M.M. Hassan, H.A. Alsalamah, G. Fortino, CNN-based health model for regular health factors analysis in Internet-of-Medical Things environment. IEEE Access 8, 52541–52549 (2020)

    Article  Google Scholar 

  72. R.J. Khusial, P.J. Honkoop, O. Usmani, M. Soares, A. Simpson, M. Biddiscombe, S. Meah, et al., Effectiveness of myAirCoach: A mHealth self-management system in asthma. J. Allergy Clin. Immunol. Pract. (2020)

    Google Scholar 

  73. O. Kocsis, A. Lalos, G. Arvanitis, K. Moustakas, Multi-model short-term prediction schema for mHealth empowering asthma self-management. Electron. Notes Theor. Comput. Sci. 343, 3–17 (2019)

    Article  Google Scholar 

  74. R. Sarath, W. Moyle, C.J. Jones, P. Calleja, Development of an mHealth application for family careers of people with dementia: A study protocol. Collegian 26(2), 295–301 (2019)

    Article  Google Scholar 

  75. R.M. Torrente-RodrĂ­guez, J. Tu, Y. Yang, J. Min, M. Wang, Y. Song, Y. Yu, et al., Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter (2020)

    Google Scholar 

  76. C.K. Chow, N. Ariyarathna, S.M. Islam, A. Thiagalingam, J. Redfern, mHealth in cardiovascular health care. Heart Lung Circ. 25(8), 802–807 (2016)

    Article  Google Scholar 

  77. M. Varnfield, M. Karunanithi, C.K. Lee, E. Honeyman, D. Arnold, H. Ding, et al., Smartphone-based home care model improved use of cardiac rehabilitation in postmyocardial infarction patients: Results from a randomised controlled trial. Heart 100(22), 1770–1779 (2014)

    Article  Google Scholar 

  78. S. Mendes, J. Queiroz, P. Leitão, Data driven multi-agent m-health system to characterize the daily activities of elderly people, in 2017 12th Iberian Conference on Information Systems and Technologies (CISTI), (IEEE, 2017), pp. 1–6

    Google Scholar 

  79. R. Argent, P. Slevin, A. Bevilacqua, M. Neligan, A. Daly, B. Caulfield, Wearable sensor-based exercise biofeedback for orthopedic rehabilitation: A mixed-methods user evaluation of a prototype system. Sensors 19(2), 432 (2019)

    Article  Google Scholar 

  80. C. Chinmay, Mobile Health (m-Health) for Tele-wound Monitoring, IGI: Mobile Health Applications for Quality Healthcare Delivery, Ch. 5, 98-116, (2019) ISBN: 9781522580218 https://doi.org/10.4018/978-1-5225-8021-8.ch005

  81. R. Argent, P. Slevin, A. Bevilacqua, M. Neligan, A. Daly, B. Caulfield, Wearable sensor-based exercise biofeedback for orthopedic rehabilitation: a mixed-methods user evaluation of a prototype system. Sensors, 19(2), 432 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayakumar Ponnusamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ponnusamy, V., Christopher Clement, J., Sriharipriya, K.C., Natarajan, S. (2021). Smart Healthcare Technologies for Massive Internet of Medical Things. In: Chakraborty, C., Ghosh, U., Ravi, V., Shelke, Y. (eds) Efficient Data Handling for Massive Internet of Medical Things. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-66633-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66633-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66632-3

  • Online ISBN: 978-3-030-66633-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics