Skip to main content

History of Great Salt Lake, Utah, USA: since the Termination of Lake Bonneville

  • Chapter
  • First Online:
Limnogeology: Progress, Challenges and Opportunities

Part of the book series: Syntheses in Limnogeology ((SYNLIMNO))

Abstract

During the past half century or so diverse histories of Great Salt Lake have been written from differing perspectives and all of them have contributed ideas and essential data. The published literature, however, can be confusing and misleading. In this chapter, we review and provide context for a number of those publications. This chapter is intended as a summary of what is known, what is not known, and what cannot be known with precision about the history of the lake.

Great Salt Lake is the largest hydrographically closed lake in the Bonneville basin of northwestern Utah. It responds to both short-term weather and long-term climate. In the Lake Bonneville/Great Salt Lake lacustrine system, the end of Lake Bonneville at 13,000 yr BP marks the beginning of Great Salt Lake. The much larger and deeper lakes of the Bonneville lake cycle responded to the pluvial climate of oxygen isotope stage 2, but the warmer, drier climate of oxygen isotope stage 1 led to rapid fluctuations within a relatively narrow, well-documented elevation range, 5 m above and 9 m below the historical mean elevation of ~1280 m. Two exceptional but short-lived rises of Great Salt Lake to elevations higher than 5 m above ~1280 m have been documented —one during the Gilbert episode, which peaked about 11,600 yr BP near an elevation of 1295 m, and one to about 1289 m sometime after about 11,000 yr BP.

The historical Great Salt Lake hydrograph (the past 150 years) shows its labile behavior. Smooth-curve hydrographs based on estimates of lake level at time scales of decades, centuries, or millennia, such as those presented in previous publications, do not accurately portray the way lake level rises and falls, and a precise plot of post-Bonneville changes in level of Great Salt Lake would resemble the “jagged” historical record. The available sedimentary and geomorphic data are not conducive at this time to the production of a highly precise hydrograph, so we suggest that post-Bonneville lake-level history be portrayed, imprecisely but accurately, as confined generally between the elevation limits of 1285 and 1271 m, with an indication of the exceptional spikes in the lake level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this chapter, we give elevations of lake level in meters with conversions to feet in parentheses. The scientific community uses the metric system, whereas topographic maps and gaging results by the U.S. Geological Survey in the Great Salt Lake basin are given in feet, and most people who live in the basin use units of feet in their everyday lives. Elevation measurements are rounded to the nearest meter (and foot), except in a few cases where we report previously published elevations with higher precision.

  2. 2.

    Unless otherwise noted in this chapter, all ages are reported in calibrated years before present (yr BP; “present” is AD 1950); calibrated years are approximately equal to calendar years. Calibrations of radiocarbon ages are based on CALIB7.0 and slight revision CALIB7.1 (Reimer et al. 2013; Stuiver and Reimer 1993).

  3. 3.

    The Holocene Epoch began at the end of the Younger Dryas Stadial at 11,500 to 11,700 yr BP (Walker et al. 2009; Walker et al. 2012), and in the Bonneville basin, the Gilbert episode ended at about 11,500 yr BP (Oviatt 2014). The Holocene, which comprises most of post-Bonneville time, can be subdivided into three parts: early Holocene, ending about 8200 yr BP, middle Holocene ending about 4200 yr BP, and late Holocene ending at time zero (modern day) (Walker et al. 2012).

  4. 4.

    TIC was measured at Kansas State University using a modified Chittick apparatus, following procedures described in Machette (1986). Oxygen isotopes in samples of carbonate mud were analyzed by An Liu at the University of Minnesota and David Dettman at the University of Arizona. Prior to isotopic analyses, grains of sand size or larger were removed from the mud.

References

  • Arnow, T., & Stephens, D. (1990). Hydrologic characteristics of the Great Salt Lake, Utah: 1847–1986. U.S. Geological Survey Water-Supply Paper 2332, 32 p.

    Google Scholar 

  • Atwood, G. (1986). From the Director’s Desk. Utah Geological and Mineral Survey, Survey Notes, 20(2), 15–16.

    Google Scholar 

  • Atwood, G. (1994). Geomorphology applied to flooding problems of closed-basin lakes … specifically Great Salt Lake, Utah. Geomorphology, 10, 197–219.

    Article  Google Scholar 

  • Atwood, G. (2006). Shoreline superelevation: Evidence of coastal processes of Great Salt Lake (231 p). Utah: Utah Geological Survey Miscellaneous Publication 06-9.

    Google Scholar 

  • Atwood, G., & Mabey, D. R. (2000). Shorelines of Antelope Island as evidence of fluctuations of the level of Great Salt Lake. In J. K. King & G. C. Willis (Eds.), The geology of Antelope Island, Davis County (pp. 85–97). Utah: Utah Geological Survey Miscellaneous Publication 00-1.

    Google Scholar 

  • Atwood, G., Wambeam, T. J., & Anderson, N. J. (2016). The present as a key to the past: Paleoshoreline correlation insights from Great Salt Lake. In C. G. Oviatt & J. F. Shroder (Eds.), Lake Bonneville: A scientific update (Developments in Earth Surface Processes 20) (pp. 1–27). Amsterdam: Elsevier.

    Google Scholar 

  • Bacon, C. R. (1983). Eruptive history of Mount Mazama and Crater Lake caldera, Cascade Range, USA. Journal of Volcanology and Geothermal Research, 18, 57–115.

    Article  Google Scholar 

  • Balch, D. P., Cohen, A. S., Schnurrenberger, D. W., Haskell, B. J., Valero Garces, B. L., Beck, J. W., Cheng, H., & Edwards, R. L. (2005). Ecosystem and paleohydrological response to Quaternary climate change in the Bonneville basin, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology, 221, 99–122.

    Article  Google Scholar 

  • Baskin, R. L. (2014). Occurrence and spatial distribution of microbial bioherms in Great Salt Lake, Utah (Ph.D. thesis). University of Utah, Salt Lake City, UT, 190 p.

    Google Scholar 

  • Baxter, B. K. (2018). Great Salt Lake microbiology: A historical perspective. International Microbiology.published online 04 June 2018. https://doi.org/10.1007/s10123-018-0008-z.

  • Baxter, B. K., & Butler, J. K. (Eds.). (2020). Great Salt Lake biology: A terminal lake in a time of change (527 p). Cham: Springer.

    Google Scholar 

  • Baxter, B., Litchfield, C., Sowers, K., Griffith, J., Dassarma, P., & Dassarma, S. (2005). Microbial diversity of Great Salt Lake. In N. Gunde-Cimerman, A. Oren, & A. Plemenitaš (Eds.), Adaptation to life at high-salt concentrations in Archaea, Bacteria, and Eukarya: Cellular origin, life in extreme habitats and astrobiology (pp. 9–25). Netherlands: Springer.

    Google Scholar 

  • Baxter, B., Atwood, G., Frantz, C., VandenBerg, M., & Butler, J. (2018). Day 1 —Antelope Island and Rozel Point. In Great Salt Lake microbialites past and present. Field trip guidebook. American Association of Petroleum Geologists, Annual Convention and Exhibition, May 18–19, 2018, p. 5–52.

    Google Scholar 

  • Bills, B. G., Currey, D. R., & Marshall, G. A. (1994). Viscosity estimates for the crust and upper mantle from patterns of lacustrine shoreline deformation in the eastern Great Basin. Journal of Geophysical Research, 99(B11), 22,059–22,086.

    Article  Google Scholar 

  • Bouton, A., Vennin, E., Boulle, J., Pace, A., Bourillot, R., Thomazo, C., Brayard, A., Désaubliaux, G., Goslar, T., Yokoyama, Y., Dupraz, C., & Visscher, P. T. (2016). Linking the distribution of microbial deposits from the Great Salt Lake (Utah, USA) to tectonic and climatic processes. Biogeosciences, 13, 5511–5526.

    Article  Google Scholar 

  • Bouton, A., Venin, E., Amiotte-Suchet, P., Thomazo, C., Sizun, J.-P., Virgone, A., Gaucher, E. C., & Visscher, P. T. (2019). Prediction of the calcium carbonate budget in a sedimentary basin: A “source-to-sink” approach applied to Great Salt Lake, Utah, USA. Basin Research, 32, 1005. https://doi.org/10.1111/bre.12412.

    Article  Google Scholar 

  • Bowen, G. J., Nielson, K. E., & Eglinton, T. I. (2019). Multi-substrate radiocarbon data constrain detrital and reservoir effects in Holocene sediments of the Great Salt Lake, Utah. Radiocarbon, 61, 905. https://doi.org/10.1017/RDC.2019.62.

  • Broughton, J. M. (2000). The Homestead Cave ichthyofaunal. In D. B. Madsen (Ed.), Late Quaternary paleoecology in the Bonneville basin (Utah Geological Survey Bulletin 130) (pp. 103–121).

    Google Scholar 

  • Broughton, J. M., & Smith, G. R. (2016). The fishes of Lake Bonneville: Implications for drainage history, biogeography, and lake levels. In C. G. Oviatt & J. F. Shroder (Eds.), Lake Bonneville: A scientific update (Developments in Earth Surface Processes 20) (pp. 292–351). Amsterdam: Elsevier.

    Google Scholar 

  • Broughton, J. M., Madsen, D. B., & Quade, J. (2000). Fish remains from Homestead Cave and lake levels of the past 13,000 years in the Bonneville basin. Quaternary Research, 53, 392–401.

    Article  Google Scholar 

  • Chen, C. Y., & Maloof, A. C. (2017). Revisiting the deformed high shoreline of Lake Bonneville. Quaternary Science Reviews, 159, 169–189.

    Article  Google Scholar 

  • Clark, D. L., Oviatt, C. G., & Dinter, D. A. (2017) Interim geologic map of the Tooele 30’ × 60’ quadrangle, Tooele, Salt Lake, and Davis Counties, Utah. Utah Geological Survey Open-File Report 669DM, 43 p, scale 1:62,500.

    Google Scholar 

  • Colman, S. M., Kelts, K. R., & Dinter, D. A. (2002). Depositional history and neotectonics in Great Salt Lake, Utah, from high-resolution seismic stratigraphy. Sedimentary Geology, 148, 61–78.

    Article  Google Scholar 

  • Crittenden, M. D. (1963). New data on the isostatic deformation of Lake Bonneville.U.S. Geological Survey Professional Paper, 454-E, E1–E31.

    Google Scholar 

  • Currey, D. R. (1977). Late quaternary landforms of Great Salt Lake state park and vicinity, Davis County, Utah. In D. C. Greer (Ed.) Perceptions of Utah: A field guide. Prepared for the 1977 National Meetings of the Association of American Geographers, Salt Lake City, UT. Appendix, 85–89.

    Google Scholar 

  • Currey, D. R. (1980). Coastal geomorphology of Great Salt Lake and vicinity. In J. W. Gwynn (Ed.), Great Salt Lake: A scientific, historical, and economic overview (Utah Geological and Mineral Survey Bulletin 116) (pp. 69–82).

    Google Scholar 

  • Currey, D. R. (1982). Lake Bonneville: Selected features of relevance to neotectonic analysis. U.S. Geological Survey Open File Report 82-1070, 31 p.

    Google Scholar 

  • Currey, D. R. (1987). Great Salt Lake levels: Holocene geomorphic development and hydrographic history. In Third Annual Landsat Workshop, NASA Laboratory for Terrestrial Physics, 127–132.

    Google Scholar 

  • Currey, D. R. (1990). Quaternary paleolakes in the evolution of semidesert basins, with special emphasis on Lake Bonneville and the Great Basin, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 76, 189–214.

    Article  Google Scholar 

  • Currey, D. R., & James, S. R. (1982). Paleoenvironments of the northeastern Great Basin and northeastern basin rim region: A review of geological and biological evidence. In D. B. Madsen & J. F. O’Connell (Eds.), Man and environment in the Great Basin (pp. 27–52). Washington, DC: Society for American Archaeology Papers no. 2.

    Google Scholar 

  • Currey, D. R., Atwood, G., & Mabey, D. R. (1984) Major levels of Great Salt Lake and Lake Bonneville: Utah Geological and Mineral Survey Map 73, scale 1:750,000.

    Google Scholar 

  • Currey, D. R., Berry, M. S., Douglass, G. E., Merola, J. A., Murchison, S. B., & Ridd, M. K. (1988). The highest Holocene stage of Great Salt Lake, Utah. Geological Society of America Abstracts with Programs, 20(6), 411.

    Google Scholar 

  • DeRose, R. J., Wang, S.-Y., Buckley, B. M., & Bekker, M. F. (2014). Tree-ring reconstruction of the level of Great Salt Lake, USA. The Holocene, 24(7), 805–813.

    Article  Google Scholar 

  • Dinter, D. A., & Pechmann, J. C. (2004). Segmentation and Holocene displacement history of the Great Salt Lake fault, Utah. In W. R. Lund (Ed.) Proceedings volume. Basin and Range Province Seismic hazards summit II. Western States Seismic Policy Council, Reno-Sparks, Nevada, May 16-19, 2004, 1–5.

    Google Scholar 

  • Dinter, D. A., & Pechmann, J. C. (2014). Paleoseismology of the Promontory segment, east Great Salt Lake fault. Report for U.S. Geological Survey Award Number 02HQGR0105, Department of Geology and Geophysics, University of Utah, Salt Lake City, UT.

    Google Scholar 

  • Eardley, A. J. (1962). Gypsum dunes and evaporite history of the Great Salt Lake Desert. Utah Geological and Mineralogical Survey, Special Studies no. 2, 27 p.

    Google Scholar 

  • Eardley, A. J., Gvosdetsky, V., & Marsell, R. E. (1957). Hydrology of Lake Bonneville and sediments and soils of its basin. Geological Society of America Bulletin, 68, 1141–1202.

    Article  Google Scholar 

  • Eardley, A. J., Shuey, R. T., Gvosdetsky, V., Nash, W. P., Picard, M. D., Grey, D. C., & Kukla, G. J. (1973). Lake cycles in the Bonneville basin, Utah. Geological Society of America Bulletin, 84, 211–216.

    Article  Google Scholar 

  • Gilbert, G. K. (1890). Lake Bonneville. U.S. Geological Survey Monograph 1, 438 p.

    Google Scholar 

  • Grayson, D. K. (2011). The Great Basin: A natural prehistory, revised and expanded edition (418 p). Berkeley: University of California Press.

    Book  Google Scholar 

  • Grey, D. C., & Bennett, R. (1972). A preliminary limnological history of Great Salt Lake. In The Great Salt Lake and Utah’s water resources. Proceedings First Annual Conference, Utah Section of the American Water Resources Association, Salt Lake City, Nov. 30, 1972, 3–18.

    Google Scholar 

  • Hallet, D. J., Hills, L. V., & Clague, J. J. (1997). New accelerator mass spectrometry radiocarbon ages for the Mazama tephra layer from Kootenay National Park, British Columbia, Canada. Canadian Journal of Earth Sciences, 34, 1202–1209.

    Article  Google Scholar 

  • Herring, J. R. (1985). Charcoal flux into sediments of the north Pacific Ocean: The Cenozoic record of burning. In E. T. Sundquist & W. S. Broecker (Eds.), The carbon cycle and atmospheric CO2: Natural variations from Archean to present (American Geophysical Union Geophysical Monograph Series 32) (pp. 419–442). Washington, DC: American Geophysical Union.

    Google Scholar 

  • Homewood, P., Mettraux, M., Schaegis, J.-C., VandenBerg, M., Atwood, G., & Foubert, A. (2018). Lakeside carbonates: Travertine and microbialites. In Great Salt Lake microbialites past and present. American Association of Petroleum Geologists, Annual Convention and Exhibition, May 18–19, 2018. Field trip guidebook, Day 2 —Lakeside, 53–138.

    Google Scholar 

  • Hubbs, C. L., & Miller, R. R. (1948). The Zoological Evidence. In The Great Basin, with emphasis on glacial and Postglacial Times. Bulletin of the University of Utah 38, Biological Series 10(7), 17–144.

    Google Scholar 

  • Hylland, M. D., DuRoss, C. B., McDonald, G. N., Olig, S. S., Oviatt, C. G., Mahan, S. A., Crone, A. J., & Personius, S. F. (2012). Basin-floor Lake Bonneville stratigraphic section as revealed in paleoseismic trenches at the Baileys Lake site, West Valley fault zone, Utah. In M. D. Hylland, & K. M. Harty (Eds.), Selected topics in engineering and environmental geology in Utah: Utah Geological Association Publication 41, 175–193.

    Google Scholar 

  • Hylland, M. D, DuRoss, C. B., McDonald, G. N., Olig, S. S., Oviatt, C. G., Mahan, S. A., Crone, A. J., & Personius, S. F. (2014). Late Quaternary paleoseismology of the West Valley fault zone—Insights from the Baileys Lake trench site. In C. B. DuRoss, & M. D, Hylland (Eds.) Evaluating surface faulting chronologies of graben-bounding faults in Salt Lake Valley, Utah—New paleoseismic data from the Salt Lake City segment of the Wasatch fault zone and the West Valley fault zone. Paleoseismology of Utah, volume 24. Utah Geological Survey Special Studies 149, 45–76.

    Google Scholar 

  • Jones, B. F., Naftz, D. L., Spencer, R. J., & Oviatt, C. G. (2009). Geochemical evolution of Great Salt Lake, Utah, USA. Aquatic Geochemistry, 15, 95–121.

    Article  Google Scholar 

  • Kaufman, D. S., Forman, S. L., & Bright, J. (2001). Age of the Cutler Dam Alloformation (late Pleistocene), Bonneville Basin, Utah. Quaternary Research, 56, 322–334.

    Article  Google Scholar 

  • Kay, P. A., & Diaz, H. F. (Eds.) (1985). Problems of and prospects for predicting Great Salt Lake levels. Papers from a conference held in Salt Lake City, Utah, March 26–28, 1985, University of Utah.

    Google Scholar 

  • Lall, U., & Mann, M. (1995). The Great Salt Lake: A barometer of low-frequency climatic variability. Water Resources Research, 31, 2503–2515.

    Article  Google Scholar 

  • Lall, U., Moon, Y. I., Kwon, H. H., & Bosworth, K. (2006). Locally weighted polynomial regression: Parameter choice and application to forecasts of the Great Salt Lake. Water Resources Research, 42, W05422.

    Article  Google Scholar 

  • Lindsay, M. R., Anderson, C., Fox, N., Scofield, G., Allen, J., Anderson, E., Bueter, L., Poudel, S., Sutherland, K., Munson-McGee, J. H., Van Nostrand, J. D., Zhou, J., Spear, J. R., Baxter, B. K., Lageson, D. R., & Boyd, E. S. (2017). Microbialite response to an anthropogenic salinity gradient in Great Salt Lake, Utah. Geobiology, 15, 131–145.

    Article  Google Scholar 

  • Mabey, D. R. (1986). Notes on the historic high level of Great Salt Lake. Utah Geological and Mineral Survey, Survey Notes 20(2), 13–15.

    Google Scholar 

  • Machette, M. (1986). Calcium and magnesium carbonates. In M. J. Singer & P. Janitzky (Eds.), Field and laboratory procedures used in a soil chronosequence study (U.S. Geological Survey Bulletin 1648) (pp. 30–33).

    Google Scholar 

  • Madsen, D. B. (2000). Late Quaternary paleoecology in the Bonneville Basin. Utah Geological Survey Bulletin 130, 190 p.

    Google Scholar 

  • Madsen, D. B., & O’Connell, J. F. (Eds.) (1982). Man and environment in the Great Basin. Society for American Archaeology Papers no. 2, Washington, DC

    Google Scholar 

  • Madsen, D. B., Oviatt, C. G., Young, D. C., & Page, D. (2015). Old River Bed delta geomorphology and chronology. In D. B. Madsen, D. N. Schmitt, & D. Page (Eds.), The Paleoarchaic occupation of the Old River Bed delta (University of Utah Anthropological Papers Number 128) (pp. 30–60).

    Google Scholar 

  • McKenzie, J. A., & Eberli, G. P. (1985). Late Holocene lake-level fluctuations of the Great Salt Lake (Utah) as deduced form oxygen-isotope and carbonate contents of cored sediments. In P. A. Kay, & H. F. Diaz (Eds.), Problems of and prospects for predicting Great Salt Lake levels. Papers from a conference held in Salt Lake City, Utah, March 26–28, 1985, University of Utah, 25–39.

    Google Scholar 

  • McKenzie, J. A., & Eberli, G. P. (1987). Indications for abrupt Holocene climatic change: Late Holocene oxygen isotope stratigraphy of the Great Salt Lake, Utah. In W. H. Berger & L. D. Labeyrei (Eds.), Abrupt climate change (pp. 127–136). Washington, DC: Reidel Publishing Company.

    Chapter  Google Scholar 

  • McMahon, S., VanSmeerdijk, A., & Mcllroy, D. (2016).The origin and occurrence of subaqueous sedimentary cracks. In A. T. Brasier, D. McIlroy, & N. McLoughlin (Eds.) Earth system evolution and early life: A celebration of the work of Martin Brasier. Geological Society, London, Special Publications, 448, https://doi.org/10.1144/SP448.15

  • Mehringer, P. J., Jr., Nash, W. P., & Fuller, R. H. (1971). A Holocene volcanic as from northwestern Utah. Utah Academy Proceedings 48(1), 46–51.

    Google Scholar 

  • Mehringer, P. J. (1977). Great Basin late Quaternary environments and chronology. In D. D. Fowler (Ed.) Models and Great Basin prehistory: A symposium. University of Nevada. Desert Research Institute Publications in Social Science12, 113–167.

    Google Scholar 

  • Mehringer, P. J. (1985). Late-Quaternary pollen records from the interior Pacific Northwest and northern Great Basin of the United States. In V. M. Bryant & R. G. Holloway (Eds.), Pollen records of late-Quaternary North American sediments (pp. 167–189). Dallas: American Association of Stratigraphic Palynologists Foundation (AAPG).

    Google Scholar 

  • Merola, J. A., Currey, D. R., & Ridd, M. K. (1989). Thematic mapper laser profile resolution of Holocene lake limit, Great Salt Lake Desert, Utah. Remote Sensing Environment, 28, 233–244.

    Article  Google Scholar 

  • Miller, D. M. (2016). The Provo Shoreline of Lake Bonneville. In C. G. Oviatt & J. F. Shroder (Eds.), Lake Bonneville: A scientific update (Developments in Earth Surface Processes 20) (pp. 127–144). Amersham: Elsevier.

    Chapter  Google Scholar 

  • Miller, D. M., Oviatt, C. G., Dudash, S. L., & McGeehin, J. P. (2005). Late Holocene highstands of Great Salt Lake at Locomotive Springs, Utah. Geological Society of America Abstracts with Programs, 37(7), 335.

    Google Scholar 

  • Miller, D. M., Oviatt, C. G., & McGeehin, J. P. (2013). Stratigraphy and chronology of Provo shoreline deposits and lake-level implications, late Pleistocene Lake Bonneville, eastern Great Basin, USA. Boreas, 42, 342–361.

    Article  Google Scholar 

  • Mohammed, I. N., & Tarboton, D. G. (2012). An examination of the sensitivity of the Great Salt Lake to changes in inputs. Water Resources Research, 48, W11511.

    Article  Google Scholar 

  • Moscardelli, L., Dooley, T., Dunlap, D., Jackson, M., & Wood, L. (2012). Deep-water polygonal fault systems as terrestrial analogs for large-scale Martian polygonal terrains. Geological Society of America, 22(8), 4–9.

    Google Scholar 

  • Murchison, S. B. (1989). Fluctuation history of Great Salt Lake, Utah, during the last 13,000 years (Ph.D. dissertation). University of Utah, 137 p.

    Google Scholar 

  • Murchison, S. B., & Mulvey, W. E. (2000). Late pleistocene and heolocene shoreline stratigraphy on antelope island, Davis county, Utah. In J. K. King, & G. C. Willis (Eds.) Geology of Antelope Island. Salt Lake City, Utah Geological Survey Miscellaneous Publication 001, 77–83.

    Google Scholar 

  • Newell, D. L., Jensen, J. L., Frantz, C. M., & Vanden Berg, M. D. (2017). Great Salt Lake (Utah) Microbialite δ13C, δ18O, and δ15N record fluctuations in lake biogeochemistry since the late Pleistocene. Geochemistry, Geophysics, Geosystems, 18, 3631–3645.

    Article  Google Scholar 

  • Oliver, W., Fuller, C., Naftz, D. L., Johnson, W. P., & Diaz, X. (2009). Estimating selenium removal by sedimentation from the Great Salt Lake, Utah. Applied Geochemistry, 24, 936–949.

    Article  Google Scholar 

  • Oviatt, C. G. (1997). Lake Bonneville fluctuations and global climate change. Geology, 25, 155–158.

    Article  Google Scholar 

  • Oviatt, C. G. (2014). The Gilbert episode in the Great Salt Lake basin, UT. Geological Survey Miscellaneous Publication14–3, 20 p.

    Google Scholar 

  • Oviatt, C. G. (2015). Chronology of Lake Bonneville, 30,000 to 10,000 yr B.P. Quaternary Science Reviews, 110, 166–171.

    Article  Google Scholar 

  • Oviatt, C. G., & Jewell, P. W. (2016). The Bonneville shoreline: Reconsidering Gilbert’s interpretation. In C. G. Oviatt & J. F. Shroder (Eds.), Lake Bonneville: A scientific update (Developments in Earth Surface Processes 20) (pp. 88–104). Amersham: Elsevier.

    Google Scholar 

  • Oviatt, C. G., McCoy, W. D., & Reider, R. G. (1987). Evidence for a shallow early or middle Wisconsin lake in the Bonneville basin Utah. Quaternary Research, 27, 248–262.

    Article  Google Scholar 

  • Oviatt, C. G., Currey, D. R., & Miller, D. M. (1990). Age and paleoclimatic significance of the Stansbury shoreline of Lake Bonneville, northeastern Great Basin. Quaternary Research, 33, 291–305.

    Article  Google Scholar 

  • Oviatt, C. G., Thompson, R. S., Kaufman, D. S., Bright, J., & Forester, R. M. (1999). Reinterpretation of the Burmester core, Bonneville basin, Utah. Quaternary Research, 52, 180–184.

    Article  Google Scholar 

  • Oviatt, C. G., Miller, D. M., McGeehin, J. P., Zachary, C., & Mahan, S. (2005). The Younger Dryas phase of Great Salt Lake, Utah, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(3–4), 263–284.

    Article  Google Scholar 

  • Oviatt, C. G., Madsen, D. B., Miller, D. M., Thompson, R. S., & McGeehin, J. P. (2015). Early Holocene Great Salt Lake, USA. Quaternary Research, 84, 57–68.

    Article  Google Scholar 

  • Oviatt, C. G., Pigati, J. S., Madsen, D. B., Rhode, D. E., & Bright, J. (2018). Juke Box trench: A valuable archive of late Pleistocene and Holocene stratigraphy in the Bonneville basin. Utah: Utah Geological Survey Miscellaneous Publication18-1, 26 p.

    Google Scholar 

  • Pace, A., Bourillot, R., Bouton, A., Vennin, E., Galaup, S., Bundeleva, I., Patrier, P., Dupraz, C., Thomazo, C., Sansjofre, P., Yokoyama, Y., Franceschi, M., Anguy, Y., Pigot, L., Virgone, A., & Visscher, P. T. (2016). Microbial and diagenetic steps leading to the mineralisation of Great Salt Lake microbialites. Scientific Reports, 6. https://doi.org/10.1038/srep31495.

  • Paradis, O. P., Corsetti, F. A., Bardsley, A., Hammond, D. E., Xu, X., Stamps, B. W., Stevenson, B. S., Walker, J., & Berelson, W. M. (2017). Microbialite textures and chemical signatures in continental settings: Forging the link between the modern and ancient. Geological Society of America Abstracts with Programs, 49(6).

    Google Scholar 

  • Pederson, J. L., Janecke, S. U., Reheis, M. C., Kaufman, D. S., & Oaks, R. Q., Jr. (2016). The Bear River’s history and diversion: Constraints, unsolved problems, and implications for the Lake Bonneville record. In C. G. Oviatt & J. F. Shroder (Eds.), Lake Bonneville: A scientific update (Developments in Earth Surface Processes 20) (pp. 28–59). Amsterdam: Elsevier.

    Google Scholar 

  • Pedone, V. A. (2002). Oxygen-isotope composition of Great Salt Lake, 1979 to 1996. In W. Gwynn (Ed.), Great Salt Lake: An overview of change (Special publication of the Utah Department of Natural Resources) (pp. 121–126). Salt Lake City: Utah Geological Survey.

    Google Scholar 

  • Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., & van der Plicht, J. (2013). IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon, 55, 1869–1887.

    Article  Google Scholar 

  • Ross, D. S. (1973). Holocene fluctuations of Great Salt Lake, with special reference to evidence from the eastern shore (M.S. thesis). University of Utah, 110 p.

    Google Scholar 

  • Rudy, R. C. (1973). Holocene fluctuations of Great Salt Lake, with special reference to evidence from the western shore (M.S. thesis). University of Utah, 76 p.

    Google Scholar 

  • Simms, S. R., & Stuart, M. E. (2002). Ancient American Indian life in the Great Salt Lake wetlands: Archaeological and biological evidence. In W. Gwynn (Ed.), Great Salt Lake: An overview of change (Special publication of the Utah Department of Natural Resources) (pp. 71–83). Utah Geological Survey.

    Google Scholar 

  • Sorenson, E. D., Hoven, H. M., & Neil, J. (2020). Great Salt Lake shorebirds, their habitats and food base. In B. K. Baxter & J. K. Butler (Eds.), Great Salt Lake biology: A terminal lake in a time of change (pp. 263–309). Cham: Springer.

    Chapter  Google Scholar 

  • Spencer, R. J., Baedecker, M. J., Eugster, H. P., Forester, R. M., Goldhaber, M. B., Jones, B. F., Kelts, K., McKenzie, J., Madsen, D. B., Rettig, S. L., Rubin, M., & Bowser, C. J. (1984). Great Salt Lake and precursors, Utah: The last 30,000 years. Contributions to Mineralogy and Petrology, 86, 321–334.

    Article  Google Scholar 

  • Steponitis, E., Andrews, A., McGee, D., Quade, J., Hsieh, Y., Broecker, W. S., Shuman, B. N., Burns, S. J., & Cheng, H. (2015). Mid-Holocene drying of the U.S. Great Basin recorded in Nevada speleothems. Quaternary Science Reviews, 127, 1–12.

    Google Scholar 

  • Stokes, W. L. (1966). Introduction. In W. L. Stokes (Ed.), Guidebook to the geology of Utah (pp. 1–2). Utah: Geological Society, Guidebook number 20.

    Google Scholar 

  • Street-Perrott, E. A., & Harrison, S. P. (1985). Lake levels and climate reconstruction. In A. D. Hecht (Ed.), Paleoclimate Analysis and Modeling (pp. 291–340). New York: Wiley.

    Google Scholar 

  • Stuiver, M., & Reimer, P. J. (1993). Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon, 35, 215–230; CALIB7.0: http://calib.qub.ac.uk/calib/calib.html.

    Article  Google Scholar 

  • Thompson, R. S., Oviatt, C. G., Honke, J. S., & McGeehin, J. P. (2016). Late Quaternary changes in lakes, vegetation, and climate in the Bonneville basin reconstructed from sediment cores from Great Salt Lake. In C. G. Oviatt & J. F. Shroder (Eds.), Lake Bonneville: A scientific update (Developments in Earth Surface Processes 20) (pp. 221–291). Amsterdam: Elsevier.

    Google Scholar 

  • Vanden Berg, M. D. (2019). Domes, rings, ridges, and polygons: Characteristics of microbialites from Utah’s Great Salt Lake. The Sedimentary Record, 17, 4–10.

    Article  Google Scholar 

  • Venin, E., Bouton, A., Bourillot, R., Pace, A. L., Roche, A., Brayard, A., Thomazo, C., Virgone, A., Gaucher, E. D., Desaubliaux, G., & Vissher, P. T. (2018). The lacustrine microbial carbonate factory of the successive Lake Bonneville and Great Salt Lake, Utah, USA. Sedimentology, 66, 165. https://doi.org/10.1111/sed.12499.

    Article  Google Scholar 

  • Walker, M., Johnsen, S., Rasmussen, S. O., Popp, T., Steffensen, J.-P., Gibbard, P., Hoek, W., Lowe, J., Andrews, J., Björck, S., Cwynar, L. C., Hugen, K., Kershaw, P., Kromer, B., Litt, T., Lowe, D. J., Nakagawa, T., Newnham, R., & Schwander, J. (2009). Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. Journal of Quaternary Science, 24(1), 3–17.

    Article  Google Scholar 

  • Walker, M. J. C., Berkelhammer, M., Björck, S., Cwynar, L. C., Fisher, D. A., Long, A. J., Lowe, J. J., Newnham, R. M., Rasmussen, S. O., & Weiss, H. (2012). Formal subdivision of the Holocene Series/Epoch: A Discussion Paper by a working group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). Journal of Quaternary Science, 27(7), 649–659.

    Article  Google Scholar 

  • Wurtsbaugh, W. A., Miller, C., Null, S. E., DeRose, R. J., Wilcock, P., Hahnenberger, M., Howe, F., & Moore, J. (2017). Decline of the world’s saline lakes. Nature Geoscience, 10, 816–821. https://doi.org/10.1038/NGEO3052.

    Article  Google Scholar 

  • Zdanowicz, C. M., Zielinski, G. A., & Germani, M. S. (1999). Mount Mazama eruption: Calendrical age verified and atmospheric impact assessed. Geology, 27(7), 621–624.

    Article  Google Scholar 

Download references

Acknowledgments

Although not everyone we have interacted with about Great Salt Lake can be named here, we acknowledge the help and inspiration of the following people: Ted Arnow, Rob Baskin, Bonnie Baxter, Don Currey, David Dettman, Dave Dinter, Holly Godsey, Don Grayson, Wally Gwynn, Paul Jewell, Kerry Kelts, Blair Jones, An Liu, Don Mabey, David Madsen, Jack McGeehin, Dave Miller, Vicki Pedone, and Doyle Stephens. Much of what we learned about Great Salt Lake in the 1980s and 1990s was inspired by the professionals from the Utah Geological Survey and the U.S. Geological Survey who slogged it out on the lake. We are very grateful to Marith Reheis and William Elliott for their helpful review comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles G. Oviatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oviatt, C.G., Atwood, G., Thompson, R.S. (2021). History of Great Salt Lake, Utah, USA: since the Termination of Lake Bonneville. In: Rosen, M.R., Finkelstein, D.B., Park Boush, L., Pla-Pueyo, S. (eds) Limnogeology: Progress, Challenges and Opportunities . Syntheses in Limnogeology. Springer, Cham. https://doi.org/10.1007/978-3-030-66576-0_8

Download citation

Publish with us

Policies and ethics