Skip to main content

Modern and Ancient Animal Traces in the Extreme Environments of Lake Magadi and Nasikie Engida, Kenya Rift Valley

  • Chapter
  • First Online:
Limnogeology: Progress, Challenges and Opportunities

Abstract

Modern Lake Magadi and Nasikie Engida in the inner southern Kenya Rift exemplify the extreme conditions in some continental rift settings, with abundant inflow from hot springs and magmatic CO2, producing high-carbonate-bicarbonate, high-sodium waters with little calcium in a semi-arid closed lake basin. Hypersalinity, hyperalkalinity, and hydrothermal conditions characterize the modern lake and lake margins, and also contributed to the environmental conditions represented by the Pleistocene to Holocene sedimentary record of the basin. Micro- and macro-organisms are restricted in diversity and distribution in the modern lake basin. This study documents modern animal traces present in lake-margin sites around Lake Magadi and Nasikie Engida, and those preserved in Pleistocene and Holocene sediment outcrops in the Magadi Basin. These findings are then applied to the interpretation of examples preserved in drill-cores (HSPDP-MAG14) that span the Pleistocene to recent sedimentary record of Lake Magadi. Observed associations among animal traces, substrates, and environmental conditions in the modern sedimentary lake-margin environments help to interpret ancient lacustrine sediments in the geologic record.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allen, R. P. (1956). The Flamingos: Their Life History and Survival. New York: National Audubon Society, Research Report no. 5. 285 pp.

    Google Scholar 

  • Allen, D. J., Darling, W. G., & Burgess, W. G. (1989). Geothermics and hydrogeology of the southern part of the Kenya Rift Valley with emphasis on the Magadi-Nakuru area. British Geological Survey Research Report, SD/89/1, 68 pp.

    Google Scholar 

  • Baker, B. H. (1958). Geology of the Magadi area. Geological Survey of Kenya Report, 42, 81 pp.

    Google Scholar 

  • Baker, B. H. (1963). Geology of the area south of Magadi. Geological Survey of Kenya Report, 61, 42 pp.

    Google Scholar 

  • Baker, B. H. (1986). Tectonics and volcanism of the southern Kenya Rift Valley and its influence on rift sedimentation. In L. E. Frostick, R. W. Renaut, I. Reid, & J.-J. Tiercelin (Eds.), Sedimentation in the African Rifts. Geological Society Special Publication, 25 (pp. 45–57). London: Geological Society.

    Google Scholar 

  • Baker, B. H., & Wohlenberg, J. (1971). Structure and evolution of the Kenya Rift Valley. Nature, 229, 538–542.

    Article  Google Scholar 

  • Becht, R., Mwango, F., & Muno, F. A. (2006). Groundwater links between Kenyan Rift Valley lakes. In Proceedings of the 11th World Lakes Conference (vol. 2, pp. 7–13) Nairobi, 2005.

    Google Scholar 

  • Behr, H.-J. (2002). Magadiite and magadi chert: A critical analysis of the silica sediments in the Lake Magadi Basin, Kenya. In R. W. Renaut & G. M. Ashley (Eds.), Sedimentation in Continental Rifts. SEPM Special Publication, 73 (pp. 257–273). Tulsa: SEPM.

    Google Scholar 

  • Behr, H. J., & Röhricht, C. (2000). Record of seismotectonic events in siliceous cyanobacterial sediments (Magadi cherts), Lake Magadi, Kenya. International Journal of Earth Sciences, 89, 268–283.

    Article  Google Scholar 

  • Benison, K. (2019). The physical and chemical sedimentology of two high-altitude acid salars in Chile: Sedimentary processes in an extreme environment. Journal of Sedimentary Research, 89, 147–167.

    Article  Google Scholar 

  • Bergman, A. N., Laurent, P., Otiang’a-Owiti, G., Bergman, H. L., Walsh, P. J., Wilson, P., & Wood, C. M. (2003). Physiological adaptations of the gut in the Lake Magadi tilapia, Alcolapia grahami, an alkaline- and saline-adapted teleost fish. Comparative Biochemistry and Physiology Part A, 136, 701–715.

    Article  Google Scholar 

  • Berry, H. H. (1972). Flamingo breeding on the Etosha Pan, South West Africa, during 1971. Madoqua, Series I 5, 5–31.

    Google Scholar 

  • Brenna, B. L. (2016). The Chemical, Physical, and Microbial Origins of Pleistocene Cherts at Lake Magadi, Kenya Rift Valley (MSc thesis). University of Saskatchewan, 170 pp.

    Google Scholar 

  • Brock, T. D. (1970). High temperature systems. Annual Review of Ecology and Systematics, 1, 191–220.

    Article  Google Scholar 

  • Brock, M. L., Wiegert, R. G., & Brock, T. D. (1969). Feeding by Paracoenia and Ephydra (Diptera: Ephydridae) on the microorganisms of hot springs. Ecology, 50, 192–200.

    Article  Google Scholar 

  • Brown, L. H. (1973). The Mystery of the Flamingos (121 pp). Nairobi: East African Publishing House.

    Google Scholar 

  • Buatois, L. A., Labandeira, C. C., Mángano, G. M., Cohen, A., & Voigt, S. (2016). Chapter 11: The Mesozoic lacustrine revolution. In G. M. Mángano & L. A. Buatois (Eds.), The Trace-Fossil Record of Major Evolutionary Events: Volume 2: Mesozoic and Cenozoic. Topics in Geobiology, 40 (pp. 179–263). Dordrecht, Springer.

    Google Scholar 

  • Buatois, L. A., Renaut, R. W., Scott, J. J., & Owen, R. B. (2017). An unusual occurrence of the trace fossil Vagorichnus preserved in hydrothermal silica at Lake Baringo, Kenya Rift Valley: Taphonomic and paleoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 485, 843–853.

    Article  Google Scholar 

  • Buatois, L. A., Renaut, R. W., Owen, R. B., Behrensmeyer, A. K., & Scott, J. J. (2020). Animal bioturbation preserved in Pleistocene magadiite at Lake Magadi, Kenya Rift Valley, and its implications for the depositional environment of bedded magadiite. Scientific Reports, 10, 6794, 13 pp. https://doi.org/10.1038/s41598-020-63505-7

    Article  Google Scholar 

  • Campisano, C., Cohen, A., Arrowsmith, J., Asrat, A., Behrensmeyer, A. K., Brown, E. T., Deino, A. L., Deocampo, D. M., Feibel, C. S., Kingston, J. D., Lamb, H. F., Lowenstein, T. K., Noren, A., Olago, D. O., Owen, R. B., Pelletier, J. D., & Potts, R. (2017). The Hominin Sites and Paleolakes Drilling Project: High-resolution paleoclimate records from the East African rift system and their implications for understanding the environmental context of hominin evolution. PaleoAnthropology, 1–43. https://doi.org/10.4207/PA.2017.ART104

  • Channing, A. (2017). A review of active hot-spring analogues of Rhynie; environments habitats and ecosystems. Philosophical Transactions of the Royal Society, B, 373: 2016-490. 12 pp. https://doi.org/10.1098/rstb.2016.0490 

  • Cohen, A., Campisano, C., Arrowsmith, R., Asrat, A., Behrensmeyer, A. K., Deino, A., Feibel, C., Hill, A., Johnson, R., Kingston, J., Lamb, H., Lowenstein, T., Noren, A., Olago, D., Owen, R. B., Potts, R., Reed, K., Renaut, R., Schabitz, F., Tiercelin, J.-J., Trauth, M. H., Wynn, J., Ivory, S., Brady, K., O’Grady, R., Rodysill, J., Githiri, J., Russell, J., Foerster, V., Dommain, R., Rucina, S., Deocampo, D., Russell, J., Billingsley, A., Beck, C., Dorenbeck, G., Dullo, L., Feary, D., Garello, D., Gromig, R., Johnson, T., Junginger, A., Karanja, M., Kimburi, E., Mbuthia, A., McNulty, E., Muiruri, V., Nambiro, E., Negash, E. W., Njagi, D., Wilson, J. N., Rabideaux, N., Raub, T., Seir, M. J., Smith, P., Urban, J., Warren, M., Yadeta, M., Yost, C., & Zinaye, B. (2016). The Hominin Sites and Paleolakes Drilling Project: Inferring the environmental context of human evolution from eastern African rift lake deposits. Scientific Drilling, 21, 1–16. https://doi.org/10.5194/sd-21-1-2016

  • Crane, K. (1981). Thermal variations in the Gregory Rift of southern Kenya (?). Tectonophysics, 74, 239–262.

    Article  Google Scholar 

  • Darling, W. G. (2001). Magadi and Suguta: The contrasting hydrochemistry of two soda lake areas in the Kenya Rift Valley. In R. Cidu & F. Frau (Eds.), Proceedings of the 10th International Symposium on Water-Rock Interaction (WRI-10) (pp. 95–98). Lisse: Swets & Zeitlinger (Balkema).

    Google Scholar 

  • Darling, W. G., Allen, D. J., & Armannsson, H. (1990). Indirect detection of subsurface outflow from a Rift Valley lake. Journal of Hydrology, 113, 297–305.

    Article  Google Scholar 

  • Darling, W. G., Griesshaber, E., Andrews, J. N., Armannsson, H., & O’Nions, R. K. (1995). The origin of hydrothermal and other gases in the Kenya Rift Valley. Geochimica et Cosmochimica Acta, 59, 2501–2512.

    Article  Google Scholar 

  • De Cort, G., Mees, F., Renaut, R. W., Sinnesael, M., Van der Meeren, T., Goderis, S., Keppens, E., Mbuthia, A., & Verschuren, D. (2019). Late-Holocene sedimentation and sodium carbonate deposition in hypersaline, alkaline Nasikie Engida, southern Kenya Rift Valley. Journal of Paleolimnology, 62, 279–300.

    Article  Google Scholar 

  • Demicco, R. V., & Lowenstein, T. K. (2019). When “evaporites” are not formed by evaporation: The role of temperature and pCO2 on saline deposits of the Eocene Green River Formation, Colorado, USA. Geological Society of America (GSA) Bulletin, 16 pp. https://doi.org/10.1130/B35303.1

  • Deocampo, D. M., & Renaut, R. W. (2016). Geochemistry of African soda lakes. In M. Schagerl (Ed.), Soda Lakes of East Africa (pp. 77–96). Cham: Springer.

    Google Scholar 

  • Dunlop, J. A., & Garwood, R. J. (2017). Terrestrial invertebrates in the Rhynie chert ecosystem. Philosophical Trsansactions of the Royal Society, B, 373. https://doi.org/10.1098/rstb.2016.0489

  • Eugster, H. P. (1969). Inorganic bedded cherts from the Magadi area, Kenya. Contributions to Mineralogy and Petrology, 22, 1–31.

    Article  Google Scholar 

  • Eugster, H. P. (1980). Lake Magadi, Kenya, and its precursors. In A. Nissenbaum (Ed.), Hypersaline Brines and Evaporitic Environments. Developments in Sedimentology, 28 (pp. 195–232). Burlington: Elsevier.

    Google Scholar 

  • Eugster, H. P. (1986). Lake Magadi, Kenya: A model for rift valley hydrochemistry and sedimentation? In L. E. Frostick, R. W. Renaut, I. Reid, & J.-J. Tiercelin (Eds.), Sedimentation in the African Rifts. Geological Society Special Publication, 25 (pp. 177–189). London: Geological Society.

    Google Scholar 

  • Eugster, H. P., & Jones, B. F. (1968). Gels composed of sodium-aluminium-silicate, Lake Magadi, Kenya. Science, 161, 160–164.

    Article  Google Scholar 

  • Garcia, C. M., & Niell, F. X. (1991). Burrowing beetles of the genus Bledius (Staphylinidae) as agents of bioturbation in the emergent areas and shores of an athalassic inland lake (Fuente de Piedra, southern of Spain). Hydrobiologia, 215, 163–173.

    Article  Google Scholar 

  • Gerdes, G., Porada, H., & Bouougri, E. H. (2008). Bio-sedimentary structures evolving from the interaction of microbial mats, burrowing beetles and the physical environment of Tunisian coastal sabkhas. Senckenbergiana Maritima, 38, 45–58.

    Article  Google Scholar 

  • Gierlowski-Kordesch, E. (1991). Ichnology of an ephemeral lacustrine/alluvial plain system: Jurassic East Berlin Formation, Hartford Basin, USA. Ichnos, 1, 221–232.

    Article  Google Scholar 

  • Grant, W. D., & Jones, B. E. (2016). Bacteria, Archaea and viruses of soda lakes. In M. Schagerl (Ed.), Soda Lakes of East Africa (pp. 97–148). Cham: Springer.

    Google Scholar 

  • Grant, W. D., & Ross, H. N. M. (1986). The ecology and taxonomy of halobacteria. FEMS Microbiology Reviews, 39, 9–15.

    Article  Google Scholar 

  • Grant, W. D., & Tindall, B. J. (1986). The alkaline saline environment. In R. A. Herbert & G. A. Codd (Eds.), Microbes in Extreme Environments (pp. 25–54). London: Academic Press.

    Google Scholar 

  • Griffiths, C. L., & Griffiths, R. J. (1983). Biology and distribution of the littoral rove beetle Psamathobledius punctatissimus (Le Conte) (Coleoptera: Staphylinidae). Hydrobiologia, 101, 203–214.

    Article  Google Scholar 

  • Hay, R. (1968). Chert and its sodium-silicate precursors in sodium-carbonate lakes of East Africa. Contributions to Mineralogy and Petrology, 17, 255–274.

    Article  Google Scholar 

  • Jenkin, P. M. (1957). The filter-feeding and food of flamingoes (Phoenicopteri). Philosophical Transactions of the Royal Society of London, B, 240, 401–493.

    Article  Google Scholar 

  • Jones, B. J., Rettig, S. L., & Eugster, H. P. (1967). Silica in alkaline brines. Science, 158, 1310–1314.

    Article  Google Scholar 

  • Jones, B. F., Eugster, H. P., & Rettig, S. L. (1977). Hydrochemistry of the Lake Magadi basin, Kenya. Geochimica et Cosmochimica Acta, 41, 53–72.

    Article  Google Scholar 

  • Jones, B. E., Grant, W. D., Duckworth, A. W., & Owenson, G. G. (1998). Microbial diversity of soda lakes. Extremophiles, 2, 191–200.

    Article  Google Scholar 

  • Kambura, A. K., Mwirichia, R. K., Kasili, R. W., Karanja, E. N., Makonde, H. M., & Bogas, H. I. (2016). Bacteria and Archaea diversity within the hot springs of Lake Magadi and Little Magadi in Kenya. Biomed Central (BMC) Microbiology, 16, 136, 12 pp. https://doi.org/10.1186/s12866-016-0748-x

  • Krienitz, L. (2018). Lesser Flamingos: Descendants of Phoenix (249 pp). Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

  • Krivosheina, M. G. (2008). On insect feeding on cyanobacteria. Journal of Paleontology, 42, 596–599.

    Article  Google Scholar 

  • Lee, H., Muirhead, J. D., Fischer, T. P., Ebinger, C. J., Kattenhorn, S. A., Sharp, Z. D., & Kianji, G. (2016). Massive and prolonged deep carbon emissions associated with continental rifting. Nature Geoscience, 9, 145–149.

    Article  Google Scholar 

  • Lee, H., Fischer, T. P., Muirhead, J. D., Ebinger, C. J., Kattenhorn, S. A., Sharp, Z. D., Kianji, G., Takahata, N., & Sano, Y. (2017). Incipient rifting accompanied by the release of subcontinental lithospheric mantle volatiles in the Magadi and Natron basin, East Africa. Journal of Volcanology and Geothermal Research, 346, 118–133.

    Article  Google Scholar 

  • Leet, K., Lowenstein, T. K., Owen, R. B., Renaut, R. W., Deocampo, D. M., Cohen, A. S., McNulty, E. P., Muiruri, V. M., Rabideaux, N. M., Billingsley, A. L., & Mbuthia, A. (2016). Origins of Magadi-type chert: New clues from the HSPDP Lake Magadi drill cores. Geological Society of America, Abstracts with Programs, 48(7), 42–49.

    Google Scholar 

  • Le Turdu, C., Tiercelin, J. J., Richert, J. P., Rolet, J., Xavier, J. P., Renaut, R. W., Lezzar, K. E., & Coussement, C. (1999). Influence of pre-existing oblique discontinuities on the geometry and evolution of extensional fault patterns: Evidence from the Kenya rift using SPOT imagery. In C. K. Morley (Ed.), Geoscience of Rift Systems – Evolution of East Africa. AAPG Studies in Geology, 44 (pp. 173–191). Tulsa: The American Association of Petroleum Geologists.

    Google Scholar 

  • Lowenstein, T. K., Jagniecki, E. A., Carroll, A. R., Smith, M. E., Renaut, R. W., & Owen, R. B. (2017). The Green River salt mystery: What was the source of the hyperalkaline lake waters? Earth-Science Reviews, 173, 295–306.

    Article  Google Scholar 

  • McNulty, E. (2017). Lake Magadi and the Soda Lake Cycle: A Study of the Modern Sodium Carbonates and of Late Pleistocene and Holocene Lacustrine Core Sediments (MSc thesis). Binghamton University, Graduate Dissertations and Theses, 25, 125 pp.

    Google Scholar 

  • Mengistou, S. (2016). Invertebrates of East African soda lakes. In M. Schagerl (Ed.), Soda Lakes of East Africa (pp. 205–226). Cham: Springer.

    Google Scholar 

  • Morley, C. K. (1999). Influence of preexisting fabrics on rift structure. In C. K. Morley (Ed.), Geoscience of Rift Systems–Evolution of East Africa. AAPG Studies in Geology, 44 (pp. 151–160). Tulsa: The American Association of Petroleum Geologists.

    Google Scholar 

  • Morley, C. K., Ngenoh, D. K., & Ego, J. K. (1999). Introduction to the East African rift system. In C. K. Morley (Ed.), Geoscience of Rift Systems–Evolution of East Africa. AAPG Studies in Geology, 44 (pp. 1–18). Tulsa: The American Association of Petroleum Geologists.

    Google Scholar 

  • Muiruri, V. (2018). Late Quaternary Diatom and Palynomorph Stratigraphies and Palaeoenvironments of the Koora Graben and Lake Magadi Basin, Kenya Rift Valley (PhD thesis). Hong Kong Baptist University, 303 pp.

    Google Scholar 

  • Owen, R. B., Renaut, R. W., Hover, V. C., Ashley, G. M., & Muasya, A. M. (2004). Swamps, springs, and diatoms: Wetlands of the semi-arid Bogoria-Baringo Rift, Kenya. Hydrobiologia, 518, 59–78.

    Article  Google Scholar 

  • Owen, R. B., Renaut, R. W., Scott, J. J., Potts, R., & Behrensmeyer, A. K. (2009). Wetland sedimentation and associated diatoms in the Pleistocene Olorgesailie Basin, southern Kenya Rift Valley. Sedimentary Geology, 222, 124–137.

    Article  Google Scholar 

  • Owen, R. B., Renaut, R. W., & Lowenstein, T. K. (2018a). Spatial and temporal geochemical variability in lacustrine sedimentation in the East African Rift System: Evidence from the Kenya Rift and regional analyses. Sedimentology, 65, 1697–1730.

    Article  Google Scholar 

  • Owen, R. B., Muiruri, V. M., Lowenstein, T. K., Renaut, R. W., Rabideaux, N., Luo, S., Deino, A. L., Sier, M. J., Dupont-Nivet, G., McNulty, E. P., Leet, K., Cohen, A. S., Campisano, C., Deocampo, D., Shen, C.-C., Billingsley, A., & Mbuthia, A. (2018b). Progressive aridification in East Africa over the last half million years and implications for human evolution. Proceedings of the National Academy of Sciences, 115(44), 11174–11179.

    Article  Google Scholar 

  • Owen, R.B., Renaut, R.W., Muiruri, V.M., Rabideaux, N.M., Lowenstein, T.K., McNulty, E.P., Leet, K., Deocampo, D., Luo, S., Deino, A.L., Cohen, A., Sier, M.J., Campisano, C., Shen, C.-C., Billingsley, A., Mbuthia, A., Stockhecke, M. 2019. Quaternary history of the Lake Magadi Basin, southern Kenya Rift: Tectonic and climatic controls. Palaeogeography, Palaeoclimatology, Palaeoecology, 518, 97–118.

    Google Scholar 

  • Potts, R., Dommain, R., Moerman, J. W., Behrensmeyer, A. K., Deino, A. L., Beverly, E. J., Brown, E. T., Deocampo, D., Kinyanjui, R., Lupien, R., Owen, R. B., Rabideaux, N., Russell, J. M., Stockhecke, M., Riedl, S., deMenocal, P., Faith, J. T., Garcin, Y., Noren, A., Scott, J. J., Western, D., Bright, J., Clark, J. B., Cohen, A. S., Heil, C. W., Keller, C. B., King, J., Levin, N. E., Brady, K., Muiruri, V., Renaut, R. W., Rucina, S. M., & Uno, K. (2020). Increased ecological resource variability during a critical transition in hominin evolution. Science Advances, 6(43), eabc8975, 14 pp. https://doi.org/10.1126/sciadv.abc8975

  • Rabideaux, N. (2018). Late Quaternary East African Environmental Change based on Mineralogical and Geochemical Analysis of Outcrop and Core Material from the Southern Kenya Rift (PhD thesis). Georgia State University, 884 pp.

    Google Scholar 

  • Renaut, R. W. (1993). Zeolitic diagenesis of late quaternary fluviolacustrine sediments and associated calcrete formation in the Lake Bogoria basin, Kenya Rift Valley. Sedimentology, 40, 271–301.

    Article  Google Scholar 

  • Renaut, R. W., Jones, B., & Tiercelin, J.-J. (1998). Rapid in situ silicification of microbes at Loburu hot springs, Lake Bogoria, Kenya Rift Valley. Sedimentology, 45, 1083–1103.

    Article  Google Scholar 

  • Renaut, R. W., Owen, R. B., Lowenstein, T. K., De Cort, G., McNulty, E., Scott, J. J., & Mbuthia, A. (2021). The role of hydrothermal fluids in sedimentation in saline alkaline lakes: Evidence from Nasikie Engida, Kenya Rift Valley. Sedimentology, 68, 108–134.

    Google Scholar 

  • Röhricht, C. (1998). Lithologie und der Chertserien des Magadi Beckens, Lake Magadi, Kenia (PhD thesis). University of Gottingen.

    Google Scholar 

  • Sanz-Montera, E., Calvo, J.-P., Garcia del Cura, M. A., Ornosa, C., Outerelo, R., & Rodriguez-Aranda, J. P. (2013). The rise of the diptera-microbial mat interactions during the Cenozoic: Consequences for the sedimentary record of saline lakes. Terra Nova, 25, 465–471.

    Article  Google Scholar 

  • Scott, J. J. (2010). Saline Lake Ichnology: Kenya Rift Valley and Eocene Green River Formation, Wyoming (PhD thesis). University of Saskatchewan, 547 pp.

    Google Scholar 

  • Scott, J. J., & Smith, M. E. (2015). Trace fossils of the Eocene Green River lake basins, Wyoming, Utah, and Colorado. In M. E. Smith & A. R. Carroll (Eds.), Stratigraphy and Paleolimnology of the Green River Formation, Western USA (pp. 317–354). Dordrecht: Springer-Verlag.

    Google Scholar 

  • Scott, J. J., Renaut, R. W., Buatois, L. A., & Owen, R. B. (2009). Biogenic structures in exhumed surfaces around saline lakes: An example from Lake Bogoria, Kenya Rift Valley. Palaeogeography, Palaeoclimatology, Palaeoecology, 272, 176–198.

    Google Scholar 

  • Scott, J. J., Renaut, R. W., & Owen, R. B. (2010). Taphonomic controls on animal tracks at saline, alkaline Lake Bogoria, Kenya Rift Valley: Impact of salt efflorescence and clay mineralogy. Journal of Sedimentary Research, 80, 639–665.

    Article  Google Scholar 

  • Scott, J. J., Renaut, R. W., & Owen, R. B. (2012). Impacts of flamingos on saline lake margin and shallow lacustrine sediments in the Kenya Rift Valley. Sedimentary Geology, 277–278, 32–51.

    Article  Google Scholar 

  • Scott, J. J., Buatois, L. A., Mángano, M. G., Renaut, R. W., & Owen, R. B. (2020). Bioturbation in matgrounds at Lake Bogoria in the Kenya Rift Valley: Implications for interpreting the heterogeneous early Cambrian sea floor. Lethaia, 53, 62–71.

    Article  Google Scholar 

  • Smith, M. E., Carroll, A. R., & Scott, J. J. (2015). Stratigraphic expression of climate, tectonism, and geomorphic forcing in an underfilled lake basin: Wilkins Peak Member of the Green River Formation. In M. E. Smith & A. R. Carroll (Eds.), Stratigraphy and Paleolimnology of the Green River Formation, Western USA (pp. 61–102). Dordrecht: Springer-Verlag.

    Google Scholar 

  • Surdam, R. C., & Eugster, H. P. (1976). Mineral reactions in the sedimentary deposits of the Lake Magadi region, Kenya. Geological Society of America Bulletin, 87, 1739–1752.

    Article  Google Scholar 

  • Trewin, N. H., Fayers, S. R., & Kelman, R. (2003). Subaqueous silicification of the contents of small ponds in an Early Devonian hot-springs complex, Rhynie, Scotland. Canadian Journal of Earth Sciences, 40, 1697–1712.

    Article  Google Scholar 

  • Wiegert, R. G., & Fraleigh, P. C. (1972). Ecology of Yellowstone thermal effluent systems: Net primary production and species diversity of a successional blue-green algal mat. Limnology and Oceanography, 17, 215–228.

    Article  Google Scholar 

  • Wiegert, R. G., & Mitchell, R. (1973). Ecology of Yellowstone thermal effluent systems: Intersects of blue-green algae, grazing flies (Paracoenia, Ephydridae) and water mites (Partnuniella, Hydrachnellae). Hydrobiologia, 41, 251–271.

    Article  Google Scholar 

Download references

Acknowledgments

Beth Gierlowski-Kordesch inspired us in our approach to investigating modern and ancient traces in heterogeneous environments in the Kenya Rift, and her scientific contributions, encouragement, and friendship through the years will always be cherished. We are very grateful for scientific contributions and support provided by colleagues from the Hominin Sites and Paleolakes Drilling Project, the Smithsonian Institution Olorgesailie Drilling Project, and LacCore Laboratories at the University of Minnesota. Shangde Luo (National Cheng-Kung University) and Chuan-Chou Shen (National Taiwan University) are gratefully acknowledged for significant contributions by dating the cherts. J.J.S., R.W.R., and L.A.B. were supported by the Natural Sciences and Engineering Research Council of Canada (NSERC to LAB: grant 311726-13; RWR: grant GP629) and a PhD scholarship to J.J.S. R.B.O. acknowledges the Hong Kong Research Grants Council for continued support (HKBU12300815 and 12304018). M.S. gratefully acknowledges support from the Swiss National Science Foundation grant P300P2 158501. Drilling of the MAG14 cores was funded by ICDP and NSF grants (EAR-1123942, BCS-1241859, EAR-1115118, and EAR-1338553). Analyses were supported by the Hong Kong Research Grants Council (HKBU-201912 and 12304018). We thank the National Museums of Kenya, the Kenyan National Council for Science and Technology, the Kenyan Ministry of Mines, and the National Environmental Management Authority of Kenya for providing permits. Tata Chemicals Magadi Limited and the Magadi Administrative District of Kajiado County provided local support during drilling and field research. This is publication #30 of the Hominin Sites and Paleolakes Drilling Project (HSPDP). Thank you to Editor Michael Rosen for his persistence and dedication to this volume in Beth’s honor, and to reviewer Daniel Hembree for his constructive comments and helpful edits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer J. Scott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scott, J.J. et al. (2021). Modern and Ancient Animal Traces in the Extreme Environments of Lake Magadi and Nasikie Engida, Kenya Rift Valley. In: Rosen, M.R., Finkelstein, D.B., Park Boush, L., Pla-Pueyo, S. (eds) Limnogeology: Progress, Challenges and Opportunities . Syntheses in Limnogeology. Springer, Cham. https://doi.org/10.1007/978-3-030-66576-0_2

Download citation

Publish with us

Policies and ethics