Skip to main content

Noninvasive Intracranial Pressure Monitoring

  • 496 Accesses

Abstract

Monitoring intracranial pressure (ICP) is essential in the management of neurocritical patients. The invasive measurement of intracranial pressure, whether by ventricular or parenchymal catheters, is the most accurate. However, the risks inherent to the procedure are evident, especially in those who have clinical contraindications or possibly those whose formal indications are not yet well defined. Current methods of noninvasive ICP measurement evaluate morphological (magnetic resonance, computed tomography, ultrasound, skull deformity, and fundoscopy) as well as physiological variables (transcranial Doppler, tympanometry, near infrared spectroscopy). In this chapter, we will describe some noninvasive methods applied in clinical practice and others with prospects for this.

Keywords

  • Intracranial hypertension
  • Brain injury
  • Optic nerve
  • Computed tomography
  • Magnetic resonance
  • Skull deformity
  • Transcranial Doppler

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-66572-2_5
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-66572-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4

References

  1. Ziai WC, Thompson CB, Mayo S, McBee N, Freeman WD, Dlugash R, Ullman N, Hao Y, Lane K, Awad I, Hanley DF. Clot lysis: evaluating accelerated resolution of intraventricular hemorrhage (CLEAR III) investigators. Intracranial hypertension and cerebral perfusion pressure insults in adult hypertensive intraventricular hemorrhage: occurrence and associations with outcome. Crit Care Med. 2019;47(8):1125–34. https://doi.org/10.1097/CCM.0000000000003848.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Stein DM, Hu PF, Brenner M, Sheth KN, Liu KH, Xiong W, Aarabi B, Scalea TM. Brief episodes of intracranial hypertension and cerebral hypoperfusion are associated with poor functional outcome after severe traumatic brain injury. J Trauma. 2011;71(2):364–73.; ; discussion 373-4. https://doi.org/10.1097/TA.0b013e31822820da.

    CrossRef  PubMed  Google Scholar 

  3. Kinoshita K. Traumatic brain injury: pathophysiology for neurocritical care. J Intensive Care. 2016;4:29. https://doi.org/10.1186/s40560-016-0138-3.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Robba C, Bacigaluppi S, Cardim D, Donnelly J, Bertuccio A, Czosnyka M. Non-invasive assessment of intracranial pressure. Acta Neurol Scand. 2016;134(1):4–21. https://doi.org/10.1111/ane.12527.

    CAS  CrossRef  PubMed  Google Scholar 

  5. Padayachy LC. Non-invasive intracranial pressure assessment. Childs Nerv Syst. 2016;32(9):1587–97. https://doi.org/10.1007/s00381-016-3159-2.

    CrossRef  PubMed  Google Scholar 

  6. Sosin DM, Sniezek JE, Waxweiler RJ. Trends in death associated with traumatic brain injury, 1979 through 1992. Success and failure. JAMA. 1995;273(22):1778–80.

    CAS  CrossRef  Google Scholar 

  7. Mizutani T, Manaka S, Tsutsumi H. Estimation of intracranial pressure using computed tomography scan findings in patients with severe head injury. Surg Neurol. 1990;33(3):178–84. https://doi.org/10.1016/0090-3019(90)90181-n.

    CAS  CrossRef  PubMed  Google Scholar 

  8. Carney N, Totten AM, O'Reilly C, Ullman JS, Hawryluk GW, Bell MJ, Bratton SL, Chesnut R, Harris OA, Kissoon N, Rubiano AM, Shutter L, Tasker RC, Vavilala MS, Wilberger J, Wright DW, Ghajar J. Guidelines for the management of severe traumatic brain injury, Fourth Edition. Neurosurgery. 2017;80(1):6–15. https://doi.org/10.1227/NEU.0000000000001432.

    CrossRef  PubMed  Google Scholar 

  9. Kishore PR, Lipper MH, Becker DP, Domingues da Silva AA, Narayan RK. Significance of CT in head injury: correlation with intracranial pressure. AJR Am J Roentgenol. 1981;137(4):829–33. https://doi.org/10.2214/ajr.137.4.829.

    CAS  CrossRef  PubMed  Google Scholar 

  10. Sadhu VK, Sampson J, Haar FL, Pinto RS, Handel SF. Correlation between computed tomography and intracranial pressure monitoring in acute head trauma patients. Radiology. 1979;133(2):507–9. https://doi.org/10.1148/133.2.507.

    CAS  CrossRef  PubMed  Google Scholar 

  11. Tabaddor K, Danziger A, Wisoff HS. Estimation of intracranial pressure by CT scan in closed head trauma. Surg Neurol. 1982;18(3):212–5. https://doi.org/10.1016/0090-3019(82)90395-0.

    CAS  CrossRef  PubMed  Google Scholar 

  12. Lobato RD, Sarabia R, Rivas JJ, Cordobes F, Castro S, Muñoz MJ, Cabrera A, Barcena A, Lamas E. Normal computerized tomography scans in severe head injury. Prognostic and clinical management implications. J Neurosurg. 1986;65(6):784–9. https://doi.org/10.3171/jns.1986.65.6.0784.

    CAS  CrossRef  PubMed  Google Scholar 

  13. Eisenberg HM, Gary HE Jr, Aldrich EF, Saydjari C, Turner B, Foulkes MA, Jane JA, Marmarou A, Marshall LF, Young HF. Initial CT findings in 753 patients with severe head injury. A report from the NIH Traumatic Coma Data Bank. J Neurosurg. 1990;73(5):688–98. https://doi.org/10.3171/jns.1990.73.5.0688.

    CAS  CrossRef  PubMed  Google Scholar 

  14. Marshall LF, Marshall SB, Klauber MR, Van Berkum CM, Eisenberg H, Jane JA, Luerssen TG, Marmarou A, Foulkes MA. The diagnosis of head injury requires a classification based on computed axial tomography. J Neurotrauma. 1992;9(Suppl 1):S287–92.

    PubMed  Google Scholar 

  15. Miller MT, Pasquale M, Kurek S, White J, Martin P, Bannon K, Wasser T, Li M. Initial head computed tomographic scan characteristics have a linear relationship with initial intracranial pressure after trauma. J Trauma. 2004;56(5):967–72.; ; discussion 972–3. https://doi.org/10.1097/01.ta.0000123699.16465.8b.

    CrossRef  PubMed  Google Scholar 

  16. Bonds BW, Yang S, Hu PF, Kalpakis K, Stansbury LG, Scalea TM, Stein DM. Predicting secondary insults after severe traumatic brain injury. J Trauma Acute Care Surg. 2015;79(1):85–90; ; discussion 90. https://doi.org/10.1097/TA.0000000000000698.

    CrossRef  PubMed  Google Scholar 

  17. Alperin NJ, Lee SH, Loth F, Raksin PB, Lichtor T. MR-intracranial pressure (ICP): a method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study. Radiology. 2000;217(3):877–85. https://doi.org/10.1148/radiology.217.3.r00dc42877.

    CAS  CrossRef  PubMed  Google Scholar 

  18. Marmarou A, Shulman K, Rosende RM. A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. J Neurosurg. 1978;48(3):332–44. https://doi.org/10.3171/jns.1978.48.3.0332.

    CAS  CrossRef  PubMed  Google Scholar 

  19. Raksin PB, Alperin N, Sivaramakrishnan A, Surapaneni S, Lichtor T. Noninvasive intracranial compliance and pressure based on dynamic magnetic resonance imaging of blood flow and cerebrospinal fluid flow: review of principles, implementation, and other noninvasive approaches. Neurosurg Focus. 2003;14(4):e4. https://doi.org/10.3171/foc.2003.14.4.4.

    CrossRef  PubMed  Google Scholar 

  20. Muehlmann M, Koerte IK, Laubender RP, Steffinger D, Lehner M, Peraud A, Heinen F, Kiefer M, Reiser M, Ertl-Wagner B. Magnetic resonance-based estimation of intracranial pressure correlates with ventriculoperitoneal shunt valve opening pressure setting in children with hydrocephalus. Investig Radiol. 2013;48(7):543–7. https://doi.org/10.1097/RLI.0b013e31828ad504.

    CrossRef  Google Scholar 

  21. Marshall I, MacCormick I, Sellar R, Whittle I. Assessment of factors affecting MRI measurement of intracranial volume changes and elastance index. Br J Neurosurg. 2008;22(3):389–97. https://doi.org/10.1080/02688690801911598.

    CAS  CrossRef  PubMed  Google Scholar 

  22. Dhoondia HAN. Improved MR-intracranial pressure (MR-ICP) measurement using a new data acquisition technique. Intl Soc Mag Reson Med. 2003;1:793.

    Google Scholar 

  23. Gentry LR. Anatomy of the orbit. Neuroimaging Clin N Am. 1998;8(1):171–94.

    CAS  PubMed  Google Scholar 

  24. Liu D, Kahn M. Measurement and relationship of subarachnoid pressure of the optic nerve to intracranial pressures in fresh cadavers. Am J Ophthalmol. 1993;116(5):548–56.

    CAS  CrossRef  Google Scholar 

  25. Bekerman I, Kimiagar I, Sigal T, Vaiman M. Monitoring of intracranial pressure by CT-defined optic nerve sheath diameter. J Neuroimaging. 2016;26(3):309–14. https://doi.org/10.1111/jon.12322.

    CrossRef  PubMed  Google Scholar 

  26. Dudea SM. Ultrasonography of the eye and orbit. Med Ultrason. 2011;13(2):171–4.

    PubMed  Google Scholar 

  27. Tayal VS, Neulander M, Norton HJ, Foster T, Saunders T, Blaivas M. Emergency department sonographic measurement of optic nerve sheath diameter to detect findings of increased intracranial pressure in adult head injury patients. Ann Emerg Med. 2007;49(4):508–14. https://doi.org/10.1016/j.annemergmed.2006.06.040.

    CrossRef  PubMed  Google Scholar 

  28. Hansen HC, Helmke K. Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: ultrasound findings during intrathecal infusion tests. J Neurosurg. 1997;87(1):34–40. https://doi.org/10.3171/jns.1997.87.1.0034.

    CAS  CrossRef  PubMed  Google Scholar 

  29. Geeraerts T, Launey Y, Martin L, Pottecher J, Vigué B, Duranteau J, Benhamou D. Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med. 2007;33(10):1704–11. https://doi.org/10.1007/s00134-007-0797-6.

    CrossRef  PubMed  Google Scholar 

  30. Sekhon MS, Griesdale DE, Robba C, McGlashan N, Needham E, Walland K, Shook AC, Smielewski P, Czosnyka M, Gupta AK, Menon DK. Optic nerve sheath diameter on computed tomography is correlated with simultaneously measured intracranial pressure in patients with severe traumatic brain injury. Intensive Care Med. 2014;40(9):1267–74. https://doi.org/10.1007/s00134-014-3392-7.

    CrossRef  PubMed  Google Scholar 

  31. Vaiman M, Gottlieb P, Bekerman I. Quantitative relations between the eyeball, the optic nerve, and the optic canal important for intracranial pressure monitoring. Head Face Med. 2014;10:32. https://doi.org/10.1186/1746-160X-10-32.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  32. Liu M, Yang ZK, Yan YF, Shen X, Yao HB, Fei L, Wang ES. Optic nerve sheath measurements by computed tomography to predict intracranial pressure and guide surgery in patients with traumatic brain injury. World Neurosurg. 2020;134:e317–24. https://doi.org/10.1016/j.wneu.2019.10.065.

    CrossRef  PubMed  Google Scholar 

  33. Majeed G, Kashyap S, Menoni R, Miulli D, Sweiss R. A noninvasive method for the estimation of increased intracranial pressure in patients with severe traumatic brain injury using optic nerve sheath diameter measured on computed tomography head. Surg Neurol Int. 2019;10:97. https://doi.org/10.25259/SNI-120-2019.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Watanabe A, Kinouchi H, Horikoshi T, Uchida M, Ishigame K. Effect of intracranial pressure on the diameter of the optic nerve sheath. J Neurosurg. 2008;109(2):255–8. https://doi.org/10.3171/JNS/2008/109/8/0255.

    CrossRef  PubMed  Google Scholar 

  35. Steffen H, Eifert B, Aschoff A, Kolling GH, Völcker HE. The diagnostic value of optic disc evaluation in acute elevated intracranial pressure. Ophthalmology. 1996;103(8):1229–32. https://doi.org/10.1016/s0161-6420(96)30518-6.

    CAS  CrossRef  PubMed  Google Scholar 

  36. Frisén L. Swelling of the optic nerve head: a staging scheme. J Neurol Neurosurg Psychiatry. 1982;45(1):13–8. https://doi.org/10.1136/jnnp.45.1.13.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  37. Levin BE. The clinical significance of spontaneous pulsations of the retinal vein. Arch Neurol. 1978;35(1):37–40. https://doi.org/10.1001/archneur.1978.00500250041009.

    CAS  CrossRef  PubMed  Google Scholar 

  38. Marchbanks RJ, Reid A, Martin AM, Brightwell AP, Bateman D. The effect of raised intracranial pressure on intracochlear fluid pressure: three case studies. Br J Audiol. 1987;21(2):127–30. https://doi.org/10.3109/03005368709077785.

    CAS  CrossRef  PubMed  Google Scholar 

  39. Shimbles S, Dodd C, Banister K, Mendelow AD, Chambers IR. Clinical comparison of tympanic membrane displacement with invasive intracranial pressure measurements. Physiol Meas. 2005;26(6):1085–92. https://doi.org/10.1088/0967-3334/26/6/017.

    CAS  CrossRef  PubMed  Google Scholar 

  40. Pitlyk PJ, Piantanida TP, Ploeger DW. Noninvasive intracranial pressure monitoring. Neurosurgery. 1985;17(4):581–4. https://doi.org/10.1227/00006123-198510000-00008.

    CAS  CrossRef  PubMed  Google Scholar 

  41. Mascarenhas S, Vilela GH, Carlotti C, Damiano LE, Seluque W, Colli B, Tanaka K, Wang CC, Nonaka KO. The new ICP minimally invasive method shows that the Monro-Kellie doctrine is not valid. Acta Neurochir Suppl. 2012;114:117–20. https://doi.org/10.1007/978-3-7091-0956-4_21.

    CrossRef  PubMed  Google Scholar 

  42. Ballestero MFM, Frigieri G, Cabella BCT, de Oliveira SM, de Oliveira RS. Prediction of intracranial hypertension through noninvasive intracranial pressure waveform analysis in pediatric hydrocephalus. Childs Nerv Syst. 2017;33(9):1517–24. https://doi.org/10.1007/s00381-017-3475-1.

    CrossRef  PubMed  Google Scholar 

  43. Frigieri G, Andrade RAP, Dias C, Spavieri DL Jr, Brunelli R, Cardim DA, Wang CC, Verzola RMM, Mascarenhas S. Analysis of a non-invasive intracranial pressure monitoring method in patients with traumatic brain injury. Acta Neurochir Suppl. 2018;126:107–10. https://doi.org/10.1007/978-3-319-65798-1_23.

    CAS  CrossRef  PubMed  Google Scholar 

  44. Cabella B, Vilela GH, Mascarenhas S, Czosnyka M, Smielewski P, Dias C, Cardim DA, Wang CC, Mascarenhas P, Andrade R, Tanaka K, Silva Lopes L, Colli BO. Validation of a new noninvasive intracranial pressure monitoring method by direct comparison with an invasive technique. Acta Neurochir Suppl. 2016;122:93–6. https://doi.org/10.1007/978-3-319-22533-3_18.

    CrossRef  PubMed  Google Scholar 

  45. Fan JY, Kirkness C, Vicini P, Burr R, Mitchell P. Intracranial pressure waveform morphology and intracranial adaptive capacity. Am J Crit Care. 2008;17(6):545–54.

    CrossRef  Google Scholar 

  46. Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57(6):769–74. https://doi.org/10.3171/jns.1982.57.6.0769.

    CAS  CrossRef  PubMed  Google Scholar 

  47. de Riva N, Budohoski KP, Smielewski P, Kasprowicz M, Zweifel C, Steiner LA, Reinhard M, Fábregas N, Pickard JD, Czosnyka M. Transcranial Doppler pulsatility index: what it is and what it isn't. Neurocrit Care. 2012;17(1):58–66. https://doi.org/10.1007/s12028-012-9672-6.

    CrossRef  PubMed  Google Scholar 

  48. Behrens A, Lenfeldt N, Ambarki K, Malm J, Eklund A, Koskinen LO. Transcranial Doppler pulsatility index: not an accurate method to assess intracranial pressure. Neurosurgery. 2010;66(6):1050–7. https://doi.org/10.1227/01.NEU.0000369519.35932.F2.

    CrossRef  PubMed  Google Scholar 

  49. Wakerley BR, Kusuma Y, Yeo LL, Liang S, Kumar K, Sharma AK, Sharma VK. Usefulness of transcranial Doppler-derived cerebral hemodynamic parameters in the noninvasive assessment of intracranial pressure. J Neuroimaging. 2015;25(1):111–6. https://doi.org/10.1111/jon.12100.

    CrossRef  PubMed  Google Scholar 

  50. Fernando SM, Tran A, Cheng W, Rochwerg B, Taljaard M, Kyeremanteng K, English SW, Sekhon MS, Griesdale DEG, Dowlatshahi D, McCredie VA, Wijdicks EFM, Almenawer SA, Inaba K, Rajajee V, Perry JJ. Diagnosis of elevated intracranial pressure in critically ill adults: systematic review and meta-analysis. BMJ. 2019;366:l4225. https://doi.org/10.1136/bmj.l4225.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  51. Klingelhöfer J, Conrad B, Benecke R, Sander D, Markakis E. Evaluation of intracranial pressure from transcranial Doppler studies in cerebral disease. J Neurol. 1988;235(3):159–62. https://doi.org/10.1007/bf00314307.

    CrossRef  PubMed  Google Scholar 

  52. Nielsen HB. Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery. Front Physiol. 2014;5:93. https://doi.org/10.3389/fphys.2014.00093.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  53. Soul JS, Taylor GA, Wypij D, Duplessis AJ, Volpe JJ. Noninvasive detection of changes in cerebral blood flow by near-infrared spectroscopy in a piglet model of hydrocephalus. Pediatr Res. 2000;48(4):445–9. https://doi.org/10.1203/00006450-200010000-00005.

    CAS  CrossRef  PubMed  Google Scholar 

  54. Kristiansson H, Nissborg E, Bartek J Jr, Andresen M, Reinstrup P, Romner B. Measuring elevated intracranial pressure through noninvasive methods: a review of the literature. J Neurosurg Anesthesiol. 2013;25(4):372–85. https://doi.org/10.1097/ANA.0b013e31829795ce.

    CrossRef  PubMed  Google Scholar 

  55. Weerakkody RA, Czosnyka M, Zweifel C, Castellani G, Smielewski P, Brady K, Pickard JD, Czosnyka Z. Near infrared spectroscopy as possible non-invasive monitor of slow vasogenic ICP waves. Acta Neurochir Suppl. 2012;114:181–5. https://doi.org/10.1007/978-3-7091-0956-4_35.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Welling, L.C., Frigieri, G., Rabelo, N.N., Figueiredo, E.G. (2021). Noninvasive Intracranial Pressure Monitoring. In: Figueiredo, E.G., Welling, L.C., Rabelo, N.N. (eds) Neurocritical Care for Neurosurgeons. Springer, Cham. https://doi.org/10.1007/978-3-030-66572-2_5

Download citation