Skip to main content

Brain Edema: Pathophysiology, Diagnosis, and Treatment

  • Chapter
  • First Online:
Book cover Neurocritical Care for Neurosurgeons

Abstract

Cerebral edema occurs in essentially all forms of CNS injury and is frequently encountered in neurosurgical patients. Prompt recognition and appropriate treatment of cerebral edema is critical for adequate neurosurgical care. In this chapter, we discuss the history of cerebral edema and current models of cerebral edema pathophysiology. We discuss the diagnosis of cerebral edema, current methods of treatment, and complications of both edema and of its therapeutics. We anticipate that this chapter will serve as a guide to the neurosurgeon confronted with a patient suffering from cerebral edema and increased intracranial pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shapiro PJH. Swelling of the brain in cases of injury to the head. Arch Surg. 1929;38(3):443–56.

    Article  Google Scholar 

  2. Pickles W. Acute general edema of the brain in children with head injuries. N Engl J Med. 1950;242:607–11.

    Article  CAS  PubMed  Google Scholar 

  3. Rowbotham GF. In: Rowbotham GF, editor. Acute injuries of the head. Their diagnosis, treatment, complications and sequels. 2nd ed. Edinburgh: E. & S. Livingstone Ltd.; 1945.

    Google Scholar 

  4. Cheyne J. An essay on hydrocephalus actus, or dropsy in the brain. In: Cheyne J, editor. Cerebral edema. Edinburgh, London: Mundell, Doig, Stevenson, and Murray; 1808.

    Google Scholar 

  5. Monro A. Observations on the structure and functions of the nervous system, illustrated with tables. Edinburgh: William Creech, and by T. Cadell, P. Elmsley, J. Murray, and T. Longman, London; 1783.

    Google Scholar 

  6. Weed LHM, McKibben PS. Experimental alteration of brain bulk. Am J Physiol. 1919;48(4):531–58.

    Article  Google Scholar 

  7. Tubbs RS, Loukas M, Shoja MM, Shokouhi G, Oakes WJ. Francois Magendie (1783-1855) and his contributions to the foundations of neuroscience and neurosurgery. J Neurosurg. 2008;108(5):1038–42.

    Article  PubMed  Google Scholar 

  8. Reichardt HI. Hirnschwellung. Allg Z Psychiat. 1919;75:34–103.

    Google Scholar 

  9. Cushing H, Foley FEB. Alterations of intracranial tension by salt solutions in the alimentary canal. Proc Soc Exp Biol Med. 1920;17(8):217–8.

    Article  CAS  Google Scholar 

  10. Wise BL, Chater N. The value of hypertonic mannitol solution in decreasing brain mass and lowering cerebro-spinal-fluid pressure. J Neurosurg. 1962;19:1038–43.

    Article  CAS  PubMed  Google Scholar 

  11. Bakay LL, J.C. Cerebral edema. Springfield: Thomas; 1965.

    Google Scholar 

  12. Klatzo I. Presidental address. Neuropathological aspects of brain edema. J Neuropathol Exp Neurol. 1967;26(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  13. Kochanek KD, Xu J, Murphy SL, Minino AM, Kung HC. Deaths: final data for 2009. Natl Vital Stat Rep. 2011;60(3):1–116.

    PubMed  Google Scholar 

  14. Battey TW, Karki M, Singhal AB, Wu O, Sadaghiani S, Campbell BC, et al. Brain edema predicts outcome after nonlacunar ischemic stroke. Stroke. 2014;45(12):3643–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Donkin JJ, Vink R. Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr Opin Neurol. 2010;23(3):293–9.

    Article  CAS  PubMed  Google Scholar 

  16. Wu CX, Lin GS, Lin ZX, Zhang JD, Liu SY, Zhou CF. Peritumoral edema shown by MRI predicts poor clinical outcome in glioblastoma. World J Surg Oncol. 2015;13:97.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hammoud MA, Sawaya R, Shi W, Thall PF, Leeds NE. Prognostic significance of preoperative MRI scans in glioblastoma multiforme. J Neuro-Oncol. 1996;27(1):65–73.

    Article  CAS  Google Scholar 

  18. Pope WB, Sayre J, Perlina A, Villablanca JP, Mischel PS, Cloughesy TF. MR imaging correlates of survival in patients with high-grade gliomas. AJNR Am J Neuroradiol. 2005;26(10):2466–74.

    PubMed  PubMed Central  Google Scholar 

  19. Arima H, Wang JG, Huang Y, Heeley E, Skulina C, Parsons MW, et al. Significance of perihematomal edema in acute intracerebral hemorrhage: the INTERACT trial. Neurology. 2009;73(23):1963–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Norenberg MD. Astrocyte responses to CNS injury. J Neuropathol Exp Neurol. 1994;53(3):213–20.

    Article  CAS  PubMed  Google Scholar 

  21. Risher WC, Andrew RD, Kirov SA. Real-time passive volume responses of astrocytes to acute osmotic and ischemic stress in cortical slices and in vivo revealed by two-photon microscopy. Glia. 2009;57(2):207–21.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen M, Dong Y, Simard JM. Functional coupling between sulfonylurea receptor type 1 and a nonselective cation channel in reactive astrocytes from adult rat brain. J Neurosci. 2003;23(24):8568–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen M, Simard JM. Cell swelling and a nonselective cation channel regulated by internal Ca2+ and ATP in native reactive astrocytes from adult rat brain. J Neurosci. 2001;21(17):6512–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Su G, Kintner DB, Flagella M, Shull GE, Sun D. Astrocytes from Na(+)-K(+)-Cl(−) cotransporter-null mice exhibit absence of swelling and decrease in EAA release. Am J Physiol Cell Physiol. 2002;282(5):C1147–60.

    Article  CAS  PubMed  Google Scholar 

  25. Su G, Kintner DB, Sun D. Contribution of Na(+)-K(+)-Cl(−) cotransporter to high-[K(+)](o)- induced swelling and EAA release in astrocytes. Am J Physiol Cell Physiol. 2002;282(5):C1136–46.

    Article  CAS  PubMed  Google Scholar 

  26. Jakubovicz DE, Klip A. Lactic acid-induced swelling in C6 glial cells via Na+/H+ exchange. Brain Res. 1989;485(2):215–24.

    Article  CAS  PubMed  Google Scholar 

  27. Hansson E, Muyderman H, Leonova J, Allansson L, Sinclair J, Blomstrand F, et al. Astroglia and glutamate in physiology and pathology: aspects on glutamate transport, glutamate-induced cell swelling and gap-junction communication. Neurochem Int. 2000;37(2–3):317–29.

    Article  CAS  PubMed  Google Scholar 

  28. Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol. 2007;6(3):258–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mori K, Miyazaki M, Iwase H, Maeda M. Temporal profile of changes in brain tissue extracellular space and extracellular ion (Na(+), K(+)) concentrations after cerebral ischemia and the effects of mild cerebral hypothermia. J Neurotrauma. 2002;19(10):1261–70.

    Article  PubMed  Google Scholar 

  30. Kitayama J, Kitazono T, Yao H, Ooboshi H, Takaba H, Ago T, et al. Inhibition of Na+/H+ exchanger reduces infarct volume of focal cerebral ischemia in rats. Brain Res. 2001;922(2):223–8.

    Article  CAS  PubMed  Google Scholar 

  31. Yan Y, Dempsey RJ, Flemmer A, Forbush B, Sun D. Inhibition of Na(+)-K(+)-Cl(−) cotransporter during focal cerebral ischemia decreases edema and neuronal damage. Brain Res. 2003;961(1):22–31.

    Article  CAS  PubMed  Google Scholar 

  32. Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L, et al. Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med. 2006;12(4):433–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kovacs Z, Ikezaki K, Samoto K, Inamura T, Fukui M. VEGF and flt. Expression time kinetics in rat brain infarct. Stroke. 1996;27(10):1865–72; discussion 72–3.

    Article  CAS  PubMed  Google Scholar 

  34. Mun-Bryce S, Rosenberg GA. Matrix metalloproteinases in cerebrovascular disease. J Cereb Blood Flow Metab. 1998;18(11):1163–72.

    Article  CAS  PubMed  Google Scholar 

  35. Garcia JG, Siflinger-Birnboim A, Bizios R, Del Vecchio PJ, Fenton JW 2nd, Malik AB. Thrombin-induced increase in albumin permeability across the endothelium. J Cell Physiol. 1986;128(1):96–104.

    Article  CAS  PubMed  Google Scholar 

  36. Groothuis DR, Pasternak JF, Fischer JM, Blasberg RG, Bigner DD, Vick NA. Regional measurements of blood flow in experimental RG-2 rat gliomas. Cancer Res. 1983;43(7):3362–7.

    CAS  PubMed  Google Scholar 

  37. Bernsen HJ, Rijken PF, Oostendorp T, van der Kogel AJ. Vascularity and perfusion of human gliomas xenografted in the athymic nude mouse. Br J Cancer. 1995;71(4):721–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A. 1998;95(8):4607–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vajkoczy P, Schilling L, Ullrich A, Schmiedek P, Menger MD. Characterization of angiogenesis and microcirculation of high-grade glioma: an intravital multifluorescence microscopic approach in the athymic nude mouse. J Cereb Blood Flow Metab. 1998;18(5):510–20.

    Article  CAS  PubMed  Google Scholar 

  40. Urday S, Kimberly WT, Beslow LA, Vortmeyer AO, Selim MH, Rosand J, et al. Targeting secondary injury in intracerebral haemorrhage--perihaematomal oedema. Nat Rev Neurol. 2015;11(2):111–22.

    Article  PubMed  Google Scholar 

  41. Wagner KR, Xi G, Hua Y, Kleinholz M, de Courten-Myers GM, Myers RE, et al. Lobar intracerebral hemorrhage model in pigs: rapid edema development in perihematomal white matter. Stroke. 1996;27(3):490–7.

    Article  CAS  PubMed  Google Scholar 

  42. Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016;36(3):513–38.

    Article  CAS  PubMed  Google Scholar 

  43. Garrett MC, Otten ML, Starke RM, Komotar RJ, Magotti P, Lambris JD, et al. Synergistic neuroprotective effects of C3a and C5a receptor blockade following intracerebral hemorrhage. Brain Res. 2009;1298:171–7.

    Article  CAS  PubMed  Google Scholar 

  44. Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg. 1998;89(6):991–6.

    Article  CAS  PubMed  Google Scholar 

  45. Boev AN, Fountas KN, Karampelas I, Boev C, Machinis TG, Feltes C, et al. Quantitative pupillometry: normative data in healthy pediatric volunteers. J Neurosurg. 2005;103(6 Suppl):496–500.

    PubMed  Google Scholar 

  46. Taylor WR, Chen JW, Meltzer H, Gennarelli TA, Kelbch C, Knowlton S, et al. Quantitative pupillometry, a new technology: normative data and preliminary observations in patients with acute head injury. Technical note. J Neurosurg. 2003;98(1):205–13.

    Article  PubMed  Google Scholar 

  47. Blaivas M, Theodoro D, Sierzenski PR. Elevated intracranial pressure detected by bedside emergency ultrasonography of the optic nerve sheath. Acad Emerg Med. 2003;10(4):376–81.

    Article  PubMed  Google Scholar 

  48. Geeraerts T, Merceron S, Benhamou D, Vigue B, Duranteau J. Non-invasive assessment of intracranial pressure using ocular sonography in neurocritical care patients. Intensive Care Med. 2008;34(11):2062–7.

    Article  PubMed  Google Scholar 

  49. Steffen H, Eifert B, Aschoff A, Kolling GH, Volcker HE. The diagnostic value of optic disc evaluation in acute elevated intracranial pressure. Ophthalmology. 1996;103(8):1229–32.

    Article  CAS  PubMed  Google Scholar 

  50. McNealy DEP. Brain-stem dysfunction with supratentorial mass lesions. Arch Neurol. 1962;7(1):10–32.

    Article  Google Scholar 

  51. Hanna JP, Frank JI. Automatic stepping in the pontomedullary stage of central herniation. Neurology. 1995;45(5):985–6.

    Article  CAS  PubMed  Google Scholar 

  52. Cuneo RA, Caronna JJ, Pitts L, Townsend J, Winestock DP. Upward transtentorial herniation: seven cases and a literature review. Arch Neurol. 1979;36(10):618–23.

    Article  CAS  PubMed  Google Scholar 

  53. Sato M, Tanaka S, Kohama A, Fujii C. Occipital lobe infarction caused by tentorial herniation. Neurosurgery. 1986;18(3):300–5.

    Article  CAS  PubMed  Google Scholar 

  54. Stevens RD, Shoykhet M, Cadena R. Emergency neurological life support: intracranial hypertension and herniation. Neurocrit Care. 2015;23(Suppl 2):S76–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Jang SH, Kim SH, Chang MC. Injury of the arcuate fasciculus in the nondominant hemisphere by subfalcine herniation in patients with intracerebral hemorrhage : two case reports and literature review. J Korean Neurosurg Soc. 2016;59(3):306–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Meyer A. Herniation of the brain. Arch Neurol Psychiatr. 1920;4(4):387–400.

    Article  Google Scholar 

  57. The Brain Trauma Foundation. The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care. Indications for intracranial pressure monitoring. J Neurotrauma. 2000;17(6–7):479–91.

    Google Scholar 

  58. Brain Trauma Foundation; American Association of Neurological Surgeons; Congress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CNS, Bratton SL, et al. Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring. J Neurotrauma. 2007;24(Suppl 1):S37–44.

    Google Scholar 

  59. Melhem S, Shutter L, Kaynar A. A trial of intracranial pressure monitoring in traumatic brain injury. Crit Care. 2014;18(1):302.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ho ML, Rojas R, Eisenberg RL. Cerebral edema. AJR Am J Roentgenol. 2012;199(3):W258–73.

    Article  PubMed  Google Scholar 

  61. Weisberg L, Greenberg J, Stazio A. Computed tomographic findings in brain swelling. Comput Med Imaging Graph. 1990;14(4):263–8.

    Article  CAS  PubMed  Google Scholar 

  62. Obi T, Takatsu M, Kitamoto T, Mizoguchi K, Nishimura Y. A case of Creutzfeldt-Jakob disease (CJD) started with monoparesis of the left arm. Rinsho Shinkeigaku. 1996;36(11):1245–8.

    CAS  PubMed  Google Scholar 

  63. Holland MC, Mackersie RC, Morabito D, Campbell AR, Kivett VA, Patel R, et al. The development of acute lung injury is associated with worse neurologic outcome in patients with severe traumatic brain injury. J Trauma. 2003;55(1):106–11.

    Article  PubMed  Google Scholar 

  64. Apuzzo JL, Wiess MH, Petersons V, Small RB, Kurze T, Heiden JS. Effect of positive end expiratory pressure ventilation on intracranial pressure in man. J Neurosurg. 1977;46(2):227–32.

    Article  CAS  PubMed  Google Scholar 

  65. Boone MD, Jinadasa SP, Mueller A, Shaefi S, Kasper EM, Hanafy KA, et al. The effect of positive end-expiratory pressure on intracranial pressure and cerebral hemodynamics. Neurocrit Care. 2017;26(2):174–81.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Salim A, Hadjizacharia P, Dubose J, Brown C, Inaba K, Chan LS, et al. Persistent hyperglycemia in severe traumatic brain injury: an independent predictor of outcome. Am Surg. 2009;75(1):25–9.

    Article  PubMed  Google Scholar 

  67. Scott JF, Robinson GM, French JM, O’Connell JE, Alberti KG, Gray CS. Prevalence of admission hyperglycaemia across clinical subtypes of acute stroke. Lancet. 1999;353(9150):376–7.

    Article  CAS  PubMed  Google Scholar 

  68. Berger L, Hakim AM. The association of hyperglycemia with cerebral edema in stroke. Stroke. 1986;17(5):865–71.

    Article  CAS  PubMed  Google Scholar 

  69. Mavrocordatos P, Bissonnette B, Ravussin P. Effects of neck position and head elevation on intracranial pressure in anaesthetized neurosurgical patients: preliminary results. J Neurosurg Anesthesiol. 2000;12(1):10–4.

    Article  CAS  PubMed  Google Scholar 

  70. Meixensberger J, Baunach S, Amschler J, Dings J, Roosen K. Influence of body position on tissue-pO2, cerebral perfusion pressure and intracranial pressure in patients with acute brain injury. Neurol Res. 1997;19(3):249–53.

    Article  CAS  PubMed  Google Scholar 

  71. Alarcon JD, Rubiano AM, Okonkwo DO, Alarcon J, Martinez-Zapata MJ, Urrutia G, et al. Elevation of the head during intensive care management in people with severe traumatic brain injury. Cochrane Database Syst Rev. 2017;12:CD009986.

    PubMed  Google Scholar 

  72. Schneider GH, von Helden GH, Franke R, Lanksch WR, Unterberg A. Influence of body position on jugular venous oxygen saturation, intracranial pressure and cerebral perfusion pressure. Acta Neurochir Suppl (Wien). 1993;59:107–12.

    CAS  Google Scholar 

  73. Rosner MJ, Coley IB. Cerebral perfusion pressure, intracranial pressure, and head elevation. J Neurosurg. 1986;65(5):636–41.

    Article  CAS  PubMed  Google Scholar 

  74. Raslan A, Bhardwaj A. Medical management of cerebral edema. Neurosurg Focus. 2007;22(5):E12.

    Article  PubMed  Google Scholar 

  75. James HE, Langfitt TW, Kumar VS, Ghostine SY. Treatment of intracranial hypertension. Analysis of 105 consecutive, continuous recordings of intracranial pressure. Acta Neurochir. 1977;36(3–4):189–200.

    Article  CAS  PubMed  Google Scholar 

  76. Shah S, Kimberly WT. Today’s approach to treating brain swelling in the neuro intensive care unit. Semin Neurol. 2016;36(6):502–7.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Boone MD, Oren-Grinberg A, Robinson TM, Chen CC, Kasper EM. Mannitol or hypertonic saline in the setting of traumatic brain injury: what have we learned? Surg Neurol Int. 2015;6:177.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zornow MH. Hypertonic saline as a safe and efficacious treatment of intracranial hypertension. J Neurosurg Anesthesiol. 1996;8(2):175–7.

    Article  CAS  PubMed  Google Scholar 

  79. Schwimmbeck F, Voellger B, Chappell D, Eberhart L. Hypertonic saline versus mannitol for traumatic brain injury: a systematic review and meta-analysis with trial sequential analysis. J Neurosurg Anesthesiol. 2019;99(35):e21655.

    Google Scholar 

  80. Sakellaridis N, Pavlou E, Karatzas S, Chroni D, Vlachos K, Chatzopoulos K, et al. Comparison of mannitol and hypertonic saline in the treatment of severe brain injuries. J Neurosurg. 2011;114(2):545–8.

    Article  CAS  PubMed  Google Scholar 

  81. Jiang JY, Xu W, Li WP, Xu WH, Zhang J, Bao YH, et al. Efficacy of standard trauma craniectomy for refractory intracranial hypertension with severe traumatic brain injury: a multicenter, prospective, randomized controlled study. J Neurotrauma. 2005;22(6):623–8.

    Article  PubMed  Google Scholar 

  82. Rossini Z, Nicolosi F, Kolias AG, Hutchinson PJ, De Sanctis P, Servadei F. The history of decompressive craniectomy in traumatic brain injury. Front Neurol. 2019;10:458.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, D'Urso P, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011;364(16):1493–502.

    Article  CAS  PubMed  Google Scholar 

  84. Hutchinson PJ, et al. Trial of decompressive craniectomy for traumatic intracranial hypertension. J Intensive Care Soc. 2017;18(3):236–8.

    Article  Google Scholar 

  85. Kolias AG, Viaroli E, Rubiano AM, Adams H, Khan T, Gupta D, et al. The current status of decompressive craniectomy in traumatic brain injury. Curr Trauma Rep. 2018;4(4):326–32.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Vahedi K, Vicaut E, Mateo J, Kurtz A, Orabi M, Guichard JP, et al. Sequential-design, multicenter, randomized, controlled trial of early decompressive craniectomy in malignant middle cerebral artery infarction (DECIMAL trial). Stroke. 2007;38(9):2506–17.

    Article  PubMed  Google Scholar 

  87. Juttler E, Schwab S, Schmiedek P, Unterberg A, Hennerici M, Woitzik J, et al. Decompressive surgery for the treatment of malignant infarction of the middle cerebral artery (DESTINY): a randomized, controlled trial. Stroke. 2007;38(9):2518–25.

    Article  PubMed  Google Scholar 

  88. Hofmeijer J, Kappelle LJ, Algra A, Amelink GJ, van Gijn J, van der Worp HB, et al. Surgical decompression for space-occupying cerebral infarction (the hemicraniectomy after middle cerebral artery infarction with life-threatening edema trial [HAMLET]): a multicentre, open, randomised trial. Lancet Neurol. 2009;8(4):326–33.

    Article  PubMed  Google Scholar 

  89. Vahedi K, Hofmeijer J, Juettler E, Vicaut E, George B, Algra A, et al. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol. 2007;6(3):215–22.

    Article  PubMed  Google Scholar 

  90. Dhar R, Murphy-Human T. A bolus of conivaptan lowers intracranial pressure in a patient with hyponatremia after traumatic brain injury. Neurocrit Care. 2011;14(1):97–102.

    Article  PubMed  Google Scholar 

  91. Hedna VS, Bidari S, Gubernick D, Ansari S, Satriotomo I, Khan AA, et al. Treatment of stroke related refractory brain edema using mixed vasopressin antagonism: a case report and review of the literature. BMC Neurol. 2014;14:213.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fu Y, Hao J, Zhang N, Ren L, Sun N, Li YJ, et al. Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol. 2014;71(9):1092–101.

    Article  PubMed  Google Scholar 

  93. Li YJ, Chang GQ, Liu Y, Gong Y, Yang C, Wood K, et al. Fingolimod alters inflammatory mediators and vascular permeability in intracerebral hemorrhage. Neurosci Bull. 2015;31(6):755–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fu Y, Zhang N, Ren L, Yan Y, Sun N, Li YJ, et al. Impact of an immune modulator fingolimod on acute ischemic stroke. Proc Natl Acad Sci U S A. 2014;111(51):18315–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lee SH, Park HK, Ryu WS, Lee JS, Bae HJ, Han MK, et al. Effects of celecoxib on hematoma and edema volumes in primary intracerebral hemorrhage: a multicenter randomized controlled trial. Eur J Neurol. 2013;20(8):1161–9.

    Article  PubMed  Google Scholar 

  96. Sheth KN, Elm JJ, Molyneaux BJ, Hinson H, Beslow LA, Sze GK, et al. Safety and efficacy of intravenous glyburide on brain swelling after large hemispheric infarction (GAMES-RP): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2016;15(11):1160–9.

    Article  CAS  PubMed  Google Scholar 

  97. Kimberly WT, Bevers MB, von Kummer R, Demchuk AM, Romero JM, Elm JJ, et al. Effect of IV glyburide on adjudicated edema endpoints in the GAMES-RP trial. Neurology. 2018;91(23):e2163–e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sheth KN, Petersen NH, Cheung K, Elm JJ, Hinson HE, Molyneaux BJ, et al. Long-term outcomes in patients aged </=70 years with intravenous glyburide from the phase II GAMES-RP study of large hemispheric infarction: an exploratory analysis. Stroke. 2018;49(6):1457–63.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Stokum JA, Gerzanich V, Sheth KN, Kimberly WT, Simard JM. Emerging pharmacological treatments for cerebral edema: evidence from clinical studies. Annu Rev Pharmacol Toxicol. 2020;60:291–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Trosch RM, Ransom BR. Levodopa-responsive parkinsonism following central herniation due to bilateral subdural hematomas. Neurology. 1990;40(2):376–7.

    Article  CAS  PubMed  Google Scholar 

  101. Parizel PM, Makkat S, Jorens PG, Ozsarlak O, Cras P, Van Goethem JW, et al. Brainstem hemorrhage in descending transtentorial herniation (Duret hemorrhage). Intensive Care Med. 2002;28(1):85–8.

    Article  PubMed  Google Scholar 

  102. Jantzen JP. Prevention and treatment of intracranial hypertension. Best Pract Res Clin Anaesthesiol. 2007;21(4):517–38.

    Article  PubMed  Google Scholar 

  103. Stringer WA, Hasso AN, Thompson JR, Hinshaw DB, Jordan KG. Hyperventilation-induced cerebral ischemia in patients with acute brain lesions: demonstration by xenon-enhanced CT. AJNR Am J Neuroradiol. 1993;14(2):475–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Muizelaar JP, Marmarou A, Ward JD, Kontos HA, Choi SC, Becker DP, et al. Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg. 1991;75(5):731–9.

    Article  CAS  PubMed  Google Scholar 

  105. Kurland DB, Khaladj-Ghom A, Stokum JA, Carusillo B, Karimy JK, Gerzanich V, et al. Complications associated with decompressive craniectomy: a systematic review. Neurocrit Care. 2015;23(2):292–304.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse A. Stokum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stokum, J.A., Shea, P., Schwartzbauer, G., Simard, J.M. (2021). Brain Edema: Pathophysiology, Diagnosis, and Treatment. In: Figueiredo, E.G., Welling, L.C., Rabelo, N.N. (eds) Neurocritical Care for Neurosurgeons. Springer, Cham. https://doi.org/10.1007/978-3-030-66572-2_3

Download citation

Publish with us

Policies and ethics