Skip to main content

Stop-and-Go Waves: A Microscopic and a Macroscopic Description

  • Conference paper
  • First Online:
  • 598 Accesses

Part of the book series: SEMA SIMAI Springer Series ((ICIAM2019SSSS,volume 12))

Abstract

In this paper we investigate a typical phenomenon of congested traffic: the stop-and-go waves. Since modelling properly this phenomenon is crucial for developing techniques aimed at reducing it, we present two different models: a microscopic and a macroscopic one, both of them able to reproduce stop-and-go waves. In the former, vehicles’ dynamics are described by a second-order microscopic Follow-the-Leader model, which is calibrated and validated by real measurements. Data are analysed and compared with the numerical solutions computed by the microscopic model. The latter provides a description of traffic dynamic via the macroscopic second-order CGARZ model. With the numerical implementation, by means of the 2CTM scheme, we test the ability of the model of capturing stop-and-go waves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The question arises why this condition should hold true in the context of traffic modelling, considering the fact that rear-end collisions are actually possible in real life.

References

  1. A. Aw, M. Rascle, Resurrection of “second order” models of traffic flow. SIAM J. Appl. Math. 60(3), 916–938 (2000)

    Article  MathSciNet  Google Scholar 

  2. A. Aw, A. Klar, M. Rascle, T. Materne, Derivation of continuum flow traffic models from microscopic follow-the-leader models. SIAM J. Appl. Math. 63, 259–278 (2002)

    Article  MathSciNet  Google Scholar 

  3. R. Borsche, A. Klar, A nonlinear discrete velocity relaxation model for traffic flow. SIAM J. Appl. Math. 78(5), 2891–2917 (2018)

    Article  MathSciNet  Google Scholar 

  4. R.M. Colombo, Hyperbolic phase transitions in traffic flow. SIAM J. Appl. Math. 63(2), 708–721 (2003)

    Article  MathSciNet  Google Scholar 

  5. M. Di Francesco, S. Fagioli, M.D. Rosini, Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic. Math. Biosci. Eng. 14(1), 127–141 (2017). DOI 10.3934/mbe.2017009

    Google Scholar 

  6. S. Fan, Data-Fitted Generic Second Order Macroscopic Traffic Flow Models. Ph.D. thesis, (Temple University, Philadelphia, 2013)

    Google Scholar 

  7. S. Fan, M. Herty, B. Seibold, Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model. Netw. Heterog. Media 9(2), 239–268 (2014)

    Article  MathSciNet  Google Scholar 

  8. S. Fan, Y. Sun, B. Piccoli, B. Seibold, D.B. Work, A Collapsed Generalized Aw-Rascle-Zhang Model and Its Model Accuracy (2017). arXiv preprint arXiv:1702.03624

    Google Scholar 

  9. M.R. Flynn, A.R. Kasimov, J.C. Nave, R.R. Rosales, B. Seibold, Self-sustained nonlinear waves in traffic flow. Phys. Rev. E 79, 56–113 (2009)

    Article  MathSciNet  Google Scholar 

  10. D. Helbing, A. Hennecke, V. Shvetsov, M. Treiber, MASTER: macroscopic traffic simulation based on a gas-kinetic, non-local traffic model. Transport. Res. B-Meth. 35(2), 183–211 (2001)

    Article  Google Scholar 

  11. M. Herty, R. Illner, On stop-and-go waves in dense traffic. Kinet. Relat. Mod. 1(3), 437–452 (2008)

    Article  MathSciNet  Google Scholar 

  12. M. Herty, G. Puppo, S. Roncoroni, G. Visconti, The BGK approximation of kinetic models for traffic. Kinet. Relat. Mod. 13(2), 279–307 (2020)

    Article  MathSciNet  Google Scholar 

  13. B.S. Kerner, The Physics of Traffic: Empirical Freeway Pattern Features, Engineering Applications, and Theory (Springer, Berlin, 2012)

    Google Scholar 

  14. B.S. Kerner, S.L. Klenov, Deterministic microscopic three-phase traffic flow models. J. Phys. A-Math. Gen. 39(8), 1775 (2006)

    Google Scholar 

  15. B. Kerner, P. Konhäuser, M. Schilke, Deterministic spontaneous appearance of traffic jams in slightly inhomogeneous traffic flow. Phys. Rev. E 51(6), 6243 (1995)

    Google Scholar 

  16. J.A. Laval, Hysteresis in traffic flow revisited: an improved measurement method. Transport. Res. B-Meth. 45(2), 385–391 (2011)

    Article  Google Scholar 

  17. J.A. Laval, L. Leclercq, A mechanism to describe the formation and propagation of stop-and-go waves in congested freeway traffic. Philos. T. R. Soc. A 368(1928), 4519–4541 (2010)

    Article  MathSciNet  Google Scholar 

  18. J.P. Lebacque, S. Mammar, H.H. Salem, Generic second order traffic flow modelling, in Transportation and Traffic Theory 2007. Papers Selected for Presentation at ISTTT17 (2007), pp. 755–776

    Google Scholar 

  19. M.J. Lighthill, G.B. Whitham, On kinematic waves II. A theory of traffic flow on long crowded roads. P. R. Soc. Lond. A Mat. 229(1178), 317–345 (1955)

    MATH  Google Scholar 

  20. D. Ngoduy, Application of gas-kinetic theory to modelling mixed traffic of manual and ACC vehicles. Transportmetrica 8(1), 43–60 (2012)

    Article  Google Scholar 

  21. D. Ngoduy, Effect of driver behaviours on the formation and dissipation of traffic flow instabilities. Nonlinear Dynam. 69(3), 969–975 (2012)

    Article  MathSciNet  Google Scholar 

  22. P.I. Richards, Shock waves on the highway. Oper. Res. 4, 42–51 (1956)

    Article  MathSciNet  Google Scholar 

  23. B.G. Ros, V.L. Knoop, B. van Arem, S.P. Hoogendoorn, Empirical analysis of the causes of stop-and-go waves at sags. IET Intell. Transp. Syst. 8(5), 499–506 (2014)

    Article  Google Scholar 

  24. M. Schönhof, D. Helbing, Empirical features of congested traffic states and their implications for traffic modeling. Transport. Sci. 41(2), 135–166 (2007)

    Article  Google Scholar 

  25. R.E. Stern, S. Cui, M.L. Delle Monache, R. Bhadani, M. Bunting, M. Churchill, N. Hamilton, R. Haulcy, H. Pohlmann, F. Wu, B. Piccoli, B. Seibold, J. Sprinkle, D.B. Work, Dissipation of stop-and-go waves via control of autonomous vehicles: field experiments. Transport. Res. Part C-Emer. 89, 205–221 (2018). DOI 10.1016/j.trc.2018.02.005

    Google Scholar 

  26. T. Toledo, Driving behaviour: models and challenges. Transport Rev. 27(1), 65–84 (2007)

    Article  Google Scholar 

  27. A. Tordeux, G. Costeseque, M. Herty, A. Seyfried, From traffic and pedestrian follow-the-leader models with reaction time to first order convection-diffusion flow models. SIAM J. Appl. Math. 78(1), 63–79 (2018)

    Article  MathSciNet  Google Scholar 

  28. M. Treiber, A. Kesting, Traffic flow dynamics, in Traffic Flow Dynamics: Data, Models and Simulation (Springer, Berlin, 2013)

    Book  Google Scholar 

  29. US Department of Transportation, Federal Highway Administration: Next Generation Simulation (NGSIM). http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm

  30. G. Wong, S. Wong, A multi-class traffic flow model–an extension of LWR model with heterogeneous drivers. Transport. Res. A-Pol. 36(9), 827–841 (2002)

    Google Scholar 

  31. H.M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior. Transport. Res. B-Meth. 36(3), 275–290 (2002)

    Article  Google Scholar 

  32. Y. Zhao, H.M. Zhang, A unified follow-the-leader model for vehicle, bicycle and pedestrian traffic. Transport. Res. B-Meth. 105, 315–327 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Authors want to thank Maya Briani and Emiliano Cristiani for the useful suggestions and comments on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina Balzotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balzotti, C., Iacomini, E. (2021). Stop-and-Go Waves: A Microscopic and a Macroscopic Description. In: Puppo, G., Tosin, A. (eds) Mathematical Descriptions of Traffic Flow: Micro, Macro and Kinetic Models. SEMA SIMAI Springer Series(), vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-66560-9_4

Download citation

Publish with us

Policies and ethics