Andersson, M.: Strategic planning of track maintenance – state of the art. Technical Report 02-035 (2002)
Google Scholar
Andrade, A.R., Teixeira, P.F.: Hierarchical Bayesian modelling of rail track geometry degradation. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit 227(4), 364–375 (2013)
CrossRef
Google Scholar
Andrade, A., Teixeira, P.: Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models. Reliab. Eng. Syst. Saf. 142, 169–183 (2015)
CrossRef
Google Scholar
Arnaldo, I., Krawiec, K., O’Reilly, U.-M.: Multiple regression genetic programming. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation – GECCO ’14, pp. 879–886. ACM Press, New York (2014)
Google Scholar
Association of American Railroads (AAR). https://www.aar.org/todays-railroads (2015)
Bouaziz, S., Dhahri, H., Alimi, A.M., Abraham, A.: A hybrid learning algorithm for evolving Flexible Beta Basis Function Neural Tree Model. Neurocomputing 117, 107–117 (2013)
CrossRef
Google Scholar
Brimberg, J., Mladenović, N., Todosijević, R., Urošević, D.: Less is more: solving the Max-Mean diversity problem with variable neighborhood search. Inf. Sci. 382–383, 179–200 (2017)
CrossRef
Google Scholar
Brown, B.M., Chen, S.X.: Beta-Bernstein smoothing for regression curves with compact support. Scand. J. Stat. 26(1), 47–59 (1999)
MathSciNet
MATH
CrossRef
Google Scholar
Cai, W., Pacheco-Vega, A., Sen, M., Yang, K.: Heat transfer correlations by symbolic regression. Int. J. Heat Mass Trans. 49(23–24), 4352–4359 (2006)
MATH
CrossRef
Google Scholar
Cannon, D.F., Edel, K.-O., Grassie, S.L., Sawley, K.: Rail defects: an overview. Fatigue Fract. Eng. Mater. Struct. 26(10), 865–886 (2003)
CrossRef
Google Scholar
Castelli, M., Vanneschi, L., Silva, S.: Prediction of the unified Parkinson’s disease rating scale assessment using a genetic programming system with geometric semantic genetic operators. Expert Syst. Appl. 41(10), 4608–4616 (2014)
CrossRef
Google Scholar
Castelli, M., Trujillo, L., Vanneschi, L.: Energy consumption forecasting using semantic-based genetic programming with local search optimizer. Comput. Intel. Neurosci. 2015, 971908 (2015)
Google Scholar
Choi, W.-J., Choi, T.-S.: Genetic programming-based feature transform and classification for the automatic detection of pulmonary nodules on computed tomography images. Inf. Sci. 212, 57–78 (2012)
CrossRef
Google Scholar
Gonçalves-de-Silva, K., Aloise, D., Xavier-de-Souza, S., Mladenovic, N.: Less is more: simplified Nelder-Mead method for large unconstrained optimization. Yugosl. J. Oper. Res. 28, 153–169 (2018)
MathSciNet
MATH
CrossRef
Google Scholar
Costa, L.R., Aloise, D., Mladenović, N.: Less is more: basic variable neighborhood search heuristic for balanced minimum sum-of-squares clustering. Inf. Sci. 415-416, 247–253 (2017)
Google Scholar
de Arruda Pereira, M., Davis Júnior, C.A., Gontijo Carrano, E., de Vasconcelos, J.A.A.: A niching genetic programming-based multi-objective algorithm for hybrid data classification. Neurocomputing 133, 342–357 (2014)
CrossRef
Google Scholar
De Boor, C.: A Practical Guide to Splines: With 32 Figures. Springer, Berlin (2001)
MATH
Google Scholar
Deklel, A.K., Saleh, M.A., Hamdy, A.M., Saad, E.M.: Transfer learning with long term artificial neural network memory (LTANN-MEM) and neural symbolization algorithm (NSA) for solving high dimensional multi-objective symbolic regression problems. In: 2017 34th National Radio Science Conference (NRSC), pp. 343–352. IEEE, Piscataway (2017)
Google Scholar
Elleuch, S., Jarboui, B., Mladenovic, N.: Variable neighborhood programming – a new automatic programming method in artificial intelligence. Technical report, G-2016-92, GERAD, Montreal (2016)
Google Scholar
Elleuch, S., Hansen, P., Jarboui, B., Mladenović, N.: New VNP for automatic programming. Elect. Notes Discrete Math. 58, 191–198 (2017)
MATH
CrossRef
Google Scholar
Eurostat. https://ec.europa.eu/eurostat/data/database
Fernandez de Canete, J., Del Saz-Orozco, P., Baratti, R., Mulas, M., Ruano, A., Garcia-Cerezo, A.: Soft-sensing estimation of plant effluent concentrations in a biological wastewater treatment plant using an optimal neural network. Expert Syst. Appl. 63, 8–19 (2016)
Google Scholar
Friedman, J. H.: Multivariate adaptive regression splines. Annal. Stat. 19(1), 1–67 (1991)
MathSciNet
MATH
Google Scholar
Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Patt. Recog. 44(8), 1761–1776 (2011)
CrossRef
Google Scholar
García-Torres, M., Gómez-Vela, F., Melián-Batista, B., Moreno-Vega, J.M.: High-dimensional feature selection via feature grouping: a variable neighborhood search approach. Inf. Sci. 326, 102–118 (2016)
MathSciNet
CrossRef
Google Scholar
Ghaddar, B., Sakr, N., Asiedu, Y.: Spare parts stocking analysis using genetic programming. Europ. J. Oper. Res. 252(1), 136–144 (2016)
CrossRef
Google Scholar
Graupe, D.: Principles of Artificial Neural Networks. World Scientific, Singapore (2007)
MATH
CrossRef
Google Scholar
Guler, H.: Prediction of railway track geometry deterioration using artificial neural networks: a case study for Turkish state railways. Struct. Infrastruct. Eng. 10(5), 614–626 (2014)
CrossRef
Google Scholar
Gustavsson, E., Patriksson, M., Strömberg, A.-B., Wojciechowski, A., Önnheim, M.: Preventive maintenance scheduling of multi-component systems with interval costs. Comput. Ind. Eng. 76, 390–400 (2014)
CrossRef
Google Scholar
Hansen, P., Mladenović, N.: Variable neighborhood search. In: Search Methodologies, pp. 211–238. Springer, Boston (2005)
Google Scholar
Hansen, P., Mladenović, N., Pérez, JAM.: Variable neighbourhood search: methods and applications. Ann. Oper. Res. 175(1), 367–407
Google Scholar
He, Q., Li, H., Bhattacharjya, D., Parikh, D.P., Hampapur, A.: Track geometry defect rectification based on track deterioration modelling and derailment risk assessment. J. Oper. Res. Soc. 66(3), 392–404 (2015)
CrossRef
Google Scholar
Healthcare in Russia. Stat. book./Rosstat (2006)
Google Scholar
Healthcare in Russia. Stat. book./Rosstat (2007)
Google Scholar
Healthcare in Russia. Stat. book./Rosstat (2009)
Google Scholar
Healthcare in Russia. Stat. book./Rosstat (2011)
Google Scholar
Healthcare in Russia. Stat. book./Rosstat (2015)
Google Scholar
Healthcare in Russia. Stat. book./Rosstat (2017)
Google Scholar
Health at a Glance 2017: OECD indicators. http://dx.doi.org/10.1787/888933602215
Health at a Glance 2017: OECD indicators. http://dx.doi.org/10.1787/888933602272
Health care: current status and possible development scenarios. In: Dokl. to the 18th April International Scientific conference on the Problems of Economic and Social Development, Moscow, April 11–14, 2017. House of the Higher School of Economics (2017)
Google Scholar
Hoai, N., McKay, R., Essam, D., Chau, R.: Solving the symbolic regression problem with tree-adjunct grammar guided genetic programming: the comparative results. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), vol. 2, pp. 1326–1331. IEEE, Piscataway (2002)
Google Scholar
Hoang, T.-H., Essam, D., McKay, B., Hoai, N.-X.: Building on success in genetic programming: adaptive variation and developmental evaluation. In: Advances in Computation and Intelligence, pp. 137–146. Springer, Berlin (2007)
Google Scholar
Howard, D., Roberts, S., Brankin, R.: Target detection in SAR imagery by genetic programming. Adv. Eng. Softw. 30(5), 303–311 (1999)
CrossRef
Google Scholar
Icke, I., Bongard, J.C.: Improving genetic programming based symbolic regression using deterministic machine learning. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1763–1770. IEEE, Piscataway (2013)
Google Scholar
Jaba, E., Balan, C.B., Robu, I.-B.: The relationship between life expectancy at birth and health expenditures estimated by a cross-country and time-series analysis. Proc. Eco. Finance 15, 108–114 (2014). Emerging Markets Queries in Finance and Business (EMQ 2013).
Google Scholar
Jiaqiu, W., Ioannis, T., Chen, Z.: A space–time delay neural network model for travel time prediction. Eng. Appl. Artif. Intell. 52, 145–160 (2016)
CrossRef
Google Scholar
Johnson, C.G.: Genetic Programming Crossover: Does It Cross over? pp. 97–108. Springer, Berlin (2009)
Google Scholar
Kantardzic, M.: Data Mining Concepts, Models, Methods, and Algorithms. Wiley-IEEE Press, Hoboken (2011)
MATH
CrossRef
Google Scholar
Karaboga, D., Ozturk, C., Karaboga, N., Gorkemli, B.: Artificial bee colony programming for symbolic regression. Inf. Sci. 209, 1–15 (2012)
CrossRef
Google Scholar
Keijzer, M.: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling, pp. 70–82. Springer, Berlin (2003)
Google Scholar
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
MATH
Google Scholar
Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994)
MATH
Google Scholar
Kristjanpoller, W., Minutolo, M.C.: Forecasting volatility of oil price using an artificial neural network-GARCH model. Expert Syst. Appl. 65, 233–241 (2016)
CrossRef
Google Scholar
Lalonde, M.: A new perspective on the health of Canadians. Technical report (1994)
Google Scholar
Lamson, S.T., Hastings, N.A.J., Willis, R.J.: Minimum cost maintenance in heavy haul rail track. J. Oper. Res. Soc. 34(3), 211 (1983)
CrossRef
Google Scholar
Lane, F., Azad, R., Ryan, C.: On effective and inexpensive local search techniques in genetic programming regression. In: Parallel Problem Solving from Nature – PPSN XIII, vol. 8672. Lecture Notes in Computer Science. Springer International Publishing, Berlin (2014)
Google Scholar
Lidén, T.: Railway infrastructure maintenance – a survey of planning problems and conducted research. Trans. Res. Proc. 10, 574–583 (2015)
Google Scholar
Life expectancy increasing in Russia, experts claim. https://www.vedomosti.ru/economics/articles/2018/05/29/770996-rosta-prodolzhitelnosti-zhizni
Lubitz, J., Cai, L., Kramarow, E., Lentzner, H.: Health, life expectancy, and health care spending among the elderly. N. Engl. J. Med. 349(11), 1048–1055 (2003). PMID: 12968089
CrossRef
Google Scholar
Ly, D.L., Lipson, H.: Learning symbolic representations of hybrid dynamical systems. J. Mach. Learn. Res. 13(Dec), 3585–3618 (2012)
MathSciNet
MATH
Google Scholar
Macchi, M., Garetti, M., Centrone, D., Fumagalli, L., Piero Pavirani, G.: Maintenance management of railway infrastructures based on reliability analysis. Reliab. Eng. Syst. Saf. 104, 71–83 (2012)
CrossRef
Google Scholar
Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)
MathSciNet
MATH
CrossRef
Google Scholar
Mladenović, N., Urošević, D.: Variable Neighborhood Search for the K-Cardinality Tree. Metaheuristics: Computer Decision-Making, Applied Optimization. Springer, Boston (2003)
Google Scholar
Mladenović, N., Todosijević, R., Urošević, D.: Less is more: basic variable neighborhood search for minimum differential dispersion problem. Inf. Sci. 326, 160–171 (2016)
CrossRef
Google Scholar
Mladenović, M., Delot, T., Laporte, G., Wilbaut, C.: The parking allocation problem for connected vehicles. J. Heuristics 26, 377–399 (2020)
CrossRef
Google Scholar
Mladenović, N., Alkandari, A., Pei, J., Todosijević, R., Pardalos, P.M.: Less is more approach: basic variable neighborhood search for the obnoxious p-median problem. Int. Trans. Oper. Res. 27(1), 480–493 (2020)
MathSciNet
CrossRef
Google Scholar
Muggleton, S., de Raedt, L.: Inductive logic programming: theory and methods. J. Logic Program. 19–20, 629–679 (1994)
MathSciNet
MATH
CrossRef
Google Scholar
Musilek, P., Lau, A., Reformat, M., Wyardscott, L.: Immune programming. Inf. Sci. 176(8), 972–1002 (2006)
MathSciNet
MATH
CrossRef
Google Scholar
Nguyen, S., Zhang, M., Member, S., Johnston, M., Tan, K.C.: Automatic programming via iterated local search for dynamic job shop scheduling. IEEE Trans. Cybern. 45(1), 1–14 (2015)
CrossRef
Google Scholar
O’Neill, M., Brabazon, A.: Grammatical swarm. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 163–174. Springer, Berlin (2004)
Google Scholar
Pei, J., Mladenović, N., Urošević, D., Brimberg, J., Liu, X.: Solving the traveling repairman problem with profits: a novel variable neighborhood search approach. Inf. Sci. 507, 108–123 (2020)
MathSciNet
MATH
CrossRef
Google Scholar
Peng, F., Kang, S., Li, X., Ouyang, Y., Somani, K., Acharya, D.: A heuristic approach to the railroad track maintenance scheduling problem. Comput. Aided Civ. Inf. Eng. 26(2), 129–145 (2011)
CrossRef
Google Scholar
Peng, F., Ouyang, Y., Somani, K.: Optimal routing and scheduling of periodic inspections in large-scale railroad networks. J. Rail Transp. Plann. Manage. 3(4), 163–171 (2013)
CrossRef
Google Scholar
Peng, Y., Yuan, C., Qin, X., Huang, J., Shi, Y.: An improved gene expression programming approach for symbolic regression problems. Neurocomputing 137, 293–301 (2014)
CrossRef
Google Scholar
Rad, H.I., Feng, J., Iba, H.: GP-RVM: genetic programming-based symbolic regression using relevance vector machine. ArXiv: 1806,02502v (2018)
Google Scholar
Roux, O., Cyril, F.: Ant programming: or how to use ants for automatic programming. In: International Conference on Swarm Intelligence, pp. 121–129 (2000)
Google Scholar
Russian statistical yearbook. Rosstat (2018)
Google Scholar
Shcherbakova, E.: Life expectancy and health care in OECD countries. Technical Report, Demoscope weekly (2018)
Google Scholar
Stadtmüller, U.: Asymptotic properties of nonparametric curve estimates. Period. Math. Hung. 17(2), 83–108 (1986)
MathSciNet
MATH
CrossRef
Google Scholar
Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R.I., Galván-López, E.: Semantically-based crossover in genetic programming: application to real-valued symbolic regression. Genet. Program Evolvable Mach. 12(2), 91–119 (2011)
CrossRef
Google Scholar
Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2011)
Google Scholar
Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)
CrossRef
Google Scholar
Wong, P., Zhang, M.: SCHEME: caching subtrees in genetic programming. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 2678–2685. IEEE, Piscataway (2008)
Google Scholar
World health statistics 2017: monitoring health for the SDGs, Sustainable Development Goals. Technical Report, World Health Organization (2017)
Google Scholar
Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)
CrossRef
Google Scholar
Yousefikia, M., Moridpour, S., Setunge, S., Mazloumi, E.: Modeling degradation of tracks for maintenance planning on a tram line. J. Traffic Logist. Eng. 2(2), 86–91 (2014)
CrossRef
Google Scholar
Zhao, J., Chan, A.H.C., Stirling, A.B., Madelin, K.B.: Optimizing policies of railway ballast tamping and renewal. Trans. Res. Record J. Trans. Res. Board 1943(1), 50–56 (2006)
CrossRef
Google Scholar
Zhao, J., Chan, A.H.C., Burrow, M.P.N.: Reliability analysis and maintenance decision for railway sleepers using track condition information. J. Oper. Res. Soc. 58(8), 1047–1055 (2007)
MATH
CrossRef
Google Scholar