Skip to main content

Mathematically Rigorous Global Optimization and Fuzzy Optimization

A Brief Comparison of Paradigms, Methods, Similarities, and Differences

  • 1159 Accesses

Part of the Springer Optimization and Its Applications book series (SOIA,volume 170)


Mathematically rigorous global optimization and fuzzy optimization have different philosophical underpinnings, goals, and applications. However, some of the tools used in implementations are similar or identical. We review, compare and contrast basic ideas and applications behind these areas, referring to some of the work in the very large literature base.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-66515-9_7
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-66515-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1


  1. 1.

    Our interval details are more comprehensive, since fuzzy technology is such a large field, and since our primary expertise lies in interval analysis.

  2. 2.

    Typically, through control of the rounding mode, as specified in the IEEE 754 standard for floating point arithmetic [19].

  3. 3.

    Most desktops and laptops with appropriate programming language support, and some supercomputers, adhere to this standard.

  4. 4.

    First observed in [39, pp. 90–93] and treated by many since then.

  5. 5.

    The clustering effect is actually in common to most basic branch and bound algorithms, whether or not interval technology is used. However, its cause is closely related to the interval dependency problem.

  6. 6.

    But with complicated interpretation of results in general settings.

  7. 7.

    This is not to say that mathematical implications of particular procedures are not highly analyzed.

  8. 8.

    An interval \(\mathbb {X}\) corresponds to a fuzzy set as in Definition 5 with \(\mathcal {A} = \mathbb {X}\) and μ A(x) = 1 if \(x\in \mathbb {X}\), μ A(x) = 0 otherwise.

  9. 9.

    However, data, and even statistics, can sometimes be used in the design of membership functions.

  10. 10.

    The terms “degree of truth” and “degree of belief” are common in the literature concerning handling uncertain knowledge. Also, “belief functions,” like membership functions, are defined. See [53], for example. We do not guarantee that our definition of “degree of truth” is the same as that of all others.

  11. 11.

    The results of (1) and (2) are sharp to within measurement and rounding errors but are sometimes increasingly un-sharp when operations are combined.

  12. 12.

    See [42], etc.

  13. 13.

    For details and generalizations, see a text on interval analysis, such as [4, 43], or our work [24].

  14. 14.

    Under mild conditions on the interval extension of F′ and for most ways of computing v.

  15. 15.

    Various researchers refer to similar lists as code lists (Rall), directed acyclic graphs (DAGs, Neumaier), etc. Although, for a given problem, such lists are not unique, they may be generated automatically with computer language compilers or by other means.

  16. 16.

    To obtain a possibly better upper bound on the global optimum, we replace φ in Problem 10 by − φ and then form and solve a relaxation of the resulting problem. However, for mathematical rigor, computing an upper bound on φ is more complicated than computing a lower bound over \(\mathcal {D}\), since the region \(\mathcal {D}\) may not contain a feasible point.

  17. 17.

    Two-variable relaxations correspond to multiplication; the literature describes various relaxations to these.

  18. 18.

    Another group previously published similar ideas, with a slightly different perspective; see [15].

  19. 19.

    Notably, quadratics, since quadratic programs have been extensively studied.

  20. 20.

    Derived from μ X and f or designed some other way, to take account of perceived goodness of values of φ.


  1. Ackleh, A.S., Allen, E.J., Kearfott, R.B., Seshaiyer, P.: Classical and Modern Numerical Analysis: Theory, Methods, and Practice. Taylor and Francis, Boca Raton (2009)

    CrossRef  Google Scholar 

  2. Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, αBB, for general twice-differentiable constrained NLPs. I. Theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158 (1998)

    CrossRef  Google Scholar 

  3. Alefeld, G., Herzberger, J.: Nullstelleneinschließung mit dem Newton-Verfahren ohne Invertierung von Intervallmatrizen. (German) [Including zeros of nonlinear equations by the Newton method without inverting interval matrices]. Numer. Math. 19(1), 56–64 (1972)

    Google Scholar 

  4. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983). Transl. by Jon G. Rokne from the original German ‘Einführung in die Intervallrechnung’

    Google Scholar 

  5. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: αbb: a global optimization method for general constrained nonconvex problems. J. Global Optim. 7(4), 337–363 (1995).

  6. Anguelov, R.: The algebraic structure of spaces of intervals: Contribution of Svetoslav Markov to interval analysis and its applications. BIOMATH 2 (2014).

  7. Barreto, G.A., Coelho, R. (eds.): Fuzzy Information Processing—37th Conference of the North American Fuzzy Information Processing Society, NAFIPS 2018, Fortaleza, Brazil, July 4–6, 2018, Proceedings, Communications in Computer and Information Science, vol. 831. Springer, Berlin (2018).

  8. Berz, M., Makino, K.: Taylor models web page (2020). Accessed 30 March 2020

  9. Berz, M., Makino, K., Kim, Y.K.: Long-term stability of the Tevatron by verified global optimization. Nucl. Instrum. Methods Phys. Res., Sect. A 558(1), 1–10 (2006). Proceedings of the 8th International Computational Accelerator Physics Conference

  10. Bessiere, C.: Chapter 3 - constraint propagation. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming. Foundations of Artificial Intelligence, vol. 2, pp. 29–83. Elsevier, Amsterdam (2006).

  11. Corliss, G.F., Rall, L.B.: Bounding derivative ranges. In: Pardalos, P.M., Floudas, C.A. (eds.) Encyclopedia of Optimization. Kluwer, Dordrecht (1999)

    Google Scholar 

  12. Du, K.: Cluster problem in global optimization using interval arithmetic. Ph.D. thesis, University of Southwestern Louisiana (1994)

    Google Scholar 

  13. Du, K., Kearfott, R.B.: The cluster problem in global optimization: the univariate case. Comput. Suppl. 9, 117–127 (1992)

    MATH  Google Scholar 

  14. Dwyer, P.S.: Matrix inversion with the square root method. Technometrics 6, 197–213 (1964)

    MathSciNet  MATH  CrossRef  Google Scholar 

  15. Epperly, T.G.W., Pistikopoulos, E.N.: A reduced space branch and bound algorithm for global optimization. J. Global Optim. 11(3), 287–311 (1997)

    MathSciNet  MATH  CrossRef  Google Scholar 

  16. Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis. Marcel Dekker, New York (2003)

    MATH  CrossRef  Google Scholar 

  17. Hansen, E.R.: Global Optimization Using Interval Analysis. Marcel Dekker, New York (1983)

    Google Scholar 

  18. IEEE: 1788-2015—IEEE Standard for Interval Arithmetic. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring (2015). Approved 11 June 2015 by IEEE-SA Standards Board.

  19. IEEE Task P754: IEEE 754-2008, Standard for Floating-Point Arithmetic. IEEE, New York, NY, USA (2008).;

  20. Jaulin, L., Keiffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. SIAM, Philadelphia (2001)

    CrossRef  Google Scholar 

  21. Karhbet, S., Kearfott, R.B.: Range bounds of functions over simplices, for branch and bound algorithms. Reliab. Comput. 25, 53–73 (2017). Special volume containing refereed papers from SCAN 2016, guest editors Vladik Kreinovich and Warwick Tucker

    Google Scholar 

  22. Kearfott, R.B.: Preconditioners for the interval Gauss–Seidel method. SIAM J. Numer. Anal. 27(3), 804–822 (1990).

    MathSciNet  MATH  CrossRef  Google Scholar 

  23. Kearfott, R.B.: Decomposition of arithmetic expressions to improve the behavior of interval iteration for nonlinear systems. Computing 47(2), 169–191 (1991)

    MathSciNet  MATH  CrossRef  Google Scholar 

  24. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. No. 13 in Nonconvex optimization and its applications. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  25. Kearfott, R.B.: GlobSol User Guide. Optim. Methods Softw. 24(4–5), 687–708 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  26. Kearfott, R.B.: Erratum: Validated linear relaxations and preprocessing: some experiments. SIAM J. Optim. 21(1), 415–416 (2011)

    MathSciNet  MATH  CrossRef  Google Scholar 

  27. Kearfott, R.B., Batyrshin, I.Z., Reformat, M., Ceberio, M., Kreinovich, V. (eds.): Fuzzy Techniques: Theory and Applications - Proceedings of the 2019 Joint World Congress of the International Fuzzy Systems Association and the Annual Conference of the North American Fuzzy Information Processing Society IFSA/NAFIPS’2019 (Lafayette, Louisiana, USA, June 18–21, 2019). Advances in Intelligent Systems and Computing, vol. 1000. Springer, Berlin (2019).

  28. Kearfott, R.B., Castille, J.M., Tyagi, G.: Assessment of a non-adaptive deterministic global optimization algorithm for problems with low-dimensional non-convex subspaces. Optim. Methods Softw. 29(2), 430–441 (2014).

    MathSciNet  MATH  CrossRef  Google Scholar 

  29. Kearfott, R.B., Du, K.: The cluster problem in multivariate global optimization. J. Global Optim. 5, 253–265 (1994)

    MathSciNet  MATH  CrossRef  Google Scholar 

  30. Kearfott, R.B., Hongthong, S.: Validated linear relaxations and preprocessing: some experiments. SIAM J. Optim. 16(2), 418–433 (2005).

  31. Kearfott, R.B., Hu, C.Y., Novoa III, M.: A review of preconditioners for the interval Gauss–Seidel method. Interval Comput. 1(1), 59–85 (1991).

    MathSciNet  MATH  Google Scholar 

  32. Kearfott, R.B., Muniswamy, S., Wang, Y., Li, X., Wang, Q.: On smooth reformulations and direct non-smooth computations in global optimization for minimax problems. J. Global Optim. 57(4), 1091–1111 (2013)

    MathSciNet  MATH  CrossRef  Google Scholar 

  33. Kreinovich, V.: Relations between interval and soft computing. In: Hu, C., Kearfott, R.B., de Korvin, A. (eds.) Knowledge Processing with Interval and Soft Computing, Advanced Information and Knowledge Processing, pp. 75–97. Springer, Berlin (2008).

    CrossRef  Google Scholar 

  34. Liu, D.: A Bernstein-polynomial-based branch-and-bound algorithm for polynomial optimization over simplexes. Ph.D. thesis, Department of Mathematics, University of Louisiana, Lafayette, LA 70504-1010 USA (2021). (work in progress)

    Google Scholar 

  35. Makino, K., Berz, M.: Efficient control of the dependency problem based on Taylor model methods. Reliab. Comput. 5(1), 3–12 (1999)

    MathSciNet  MATH  CrossRef  Google Scholar 

  36. McCormick, G.P.: Converting general nonlinear programming problems to separable nonlinear programming problems. Tech. Rep. T-267, George Washington University, Washington (1972)

    Google Scholar 

  37. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs. Math. Prog. 10(2), 147–175 (1976)

    MATH  CrossRef  Google Scholar 

  38. Messine, F.: Deterministic global optimization using interval constraint propagation techniques. RAIRO-Oper. Res. 38(4), 277–293 (2004).

    MathSciNet  MATH  CrossRef  Google Scholar 

  39. Moore, R.E.: Interval arithmetic and automatic error analysis in digital computing. Ph.D. Dissertation, Department of Mathematics, Stanford University, Stanford, CA, USA (1962). Also published as Applied Mathematics and Statistics Laboratories Technical Report No. 25

  40. Moore, R.E.: Interval analysis. Prentice-Hall, Upper Saddle River (1966)

    MATH  Google Scholar 

  41. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)

    MATH  CrossRef  Google Scholar 

  42. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009).;;

  43. Neumaier, A.: Interval Methods for Systems of Equations. Encyclopedia of Mathematics and Its Applications, vol. 37. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  44. Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. In: Iserles, A. (ed.) Acta Numerica 2004, pp. 271–369. Cambridge University Press, Cambridge (2004)

    CrossRef  Google Scholar 

  45. Paulavčius, R., Žilinskas, J.: Simplicial Global Optimization. Springer, Berlin (2014).

  46. Paulavičius, R., Žilinskas, J.: Simplicial global optimization. J. Global Optim. 60(4), 801–802 (2014).

    MATH  CrossRef  Google Scholar 

  47. Ratschek, H., Rokne, J.G.: New Computer Methods for Global Optimization. Wiley, New York (1988)

    MATH  Google Scholar 

  48. Rump, S.M.: INTLAB–INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing: Papers Presented at the International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics, SCAN-98, in Szeged, Hungary, Reliable Computing, vol. 5(3), pp. 77–104. Kluwer Academic Publishers Group, Norwell and Dordrecht, (1999).

    CrossRef  Google Scholar 

  49. Rump, S.M.: INTLAB—INTerval LABoratory (1999–2020).

  50. Rump, S.M., Kashiwagi, M.: Implementation and improvements of affine arithmetic. Nonlinear Theory and Its Applications, IEICE 6(3), 341–359 (2015).

    CrossRef  Google Scholar 

  51. Sahinidis, N.V.: BARON: A general purpose global optimization software package. J. Global Optim. 8(2), 201–205 (1996)

    MathSciNet  MATH  CrossRef  Google Scholar 

  52. Sahinidis, N.V.: BARON Wikipedia page (2020). Accessed 16 March 2020

  53. Smets, P.: The degree of belief in a fuzzy event. Inf. Sci. 25, 1–19 (1981)

    MathSciNet  MATH  CrossRef  Google Scholar 

  54. Stolfi, J., de Figueiredo, L.H.: An introduction to affine arithmetic. TEMA (São Carlos) 4(3), 297–312 (2003).

  55. Sunaga, T.: Theory of interval algebra and its application to numerical analysis. RAAG Mem. 2, 29–46 (1958).

    MATH  Google Scholar 

  56. Tang, J.F., Wang, D.W., Fung, R.Y.K., Yung, K.L.: Understanding of fuzzy optimization: Theories and methods. J. Syst. Sci. Complex. 17(1), 117 (2004).

    MathSciNet  MATH  Google Scholar 

  57. Van Hentenryck, P.: Constraint Satisfaction in Logic Programming. MIT Press, Cambridge (1989)

    Google Scholar 

  58. Van Hentenryck, P., McAllester, D., Kapur, D.: Solving polynomial systems using a branch and prune approach. SIAM J. Numer. Anal. 34(2), 797–827 (1997).

    MathSciNet  MATH  CrossRef  Google Scholar 

  59. Vellasco, M., Estevez, P. (eds.): 2018 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2018, Rio de Janeiro, Brazil, July 8–13, 2018. IEEE, Piscataway (2018).

    Google Scholar 

  60. Žilinskas, J., Bogle, D.: A survey of methods for the estimation ranges of functions using interval arithmetic. In: Models and Algorithms for Global Optimization: Essays Dedicated to Antanas Žilinskas on the Occasion of His 60th Birthday, pp. 97–108 (2007).

  61. Warmus, M.M.: Approximations and inequalities in the calculus of approximations. classification of approximate numbers. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 9, 241–245 (1961).

    MathSciNet  Google Scholar 

  62. Wikipedia: COPROD web page (2020). Accessed 17 March 2020

  63. Wikipedia: Interval arithmetic Wikipedia page (2020). Accessed 30 March 2020

  64. Young, R.C.: The algebra of many-valued quantities. Math. Ann. 104, 260–290 (1931)

    MathSciNet  MATH  CrossRef  Google Scholar 

  65. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    MATH  CrossRef  Google Scholar 

  66. Žilinskas, J.: Branch and bound with simplicial partitions for global optimization. Math. Model. Anal. 13(1), 145–159 (2008).

    MathSciNet  MATH  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ralph Baker Kearfott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kearfott, R.B. (2021). Mathematically Rigorous Global Optimization and Fuzzy Optimization. In: Pardalos, P.M., Rasskazova, V., Vrahatis, M.N. (eds) Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. Springer Optimization and Its Applications, vol 170. Springer, Cham.

Download citation