Skip to main content

Quality-Diversity Optimization: A Novel Branch of Stochastic Optimization

  • Chapter
  • First Online:
Black Box Optimization, Machine Learning, and No-Free Lunch Theorems

Abstract

Traditional optimization algorithms search for a single global optimum that maximizes (or minimizes) the objective function. Multimodal optimization algorithms search for the highest peaks in the search space that can be more than one. Quality-Diversity algorithms are a recent addition to the evolutionary computation toolbox that do not only search for a single set of local optima, but instead try to illuminate the search space. In effect, they provide a holistic view of how high-performing solutions are distributed throughout a search space. The main differences with multimodal optimization algorithms are that (1) Quality-Diversity typically works in the behavioral space (or feature space), and not in the genotypic (or parameter) space, and (2) Quality-Diversity attempts to fill the whole behavior space, even if the niche is not a peak in the fitness landscape. In this chapter, we provide a gentle introduction to Quality-Diversity optimization, discuss the main representative algorithms, and the main current topics under consideration in the community. Throughout the chapter, we also discuss several successful applications of Quality-Diversity algorithms, including deep learning, robotics, and reinforcement learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., Amanatides, P.G., Scherer, S.E., Li, P.W., Hoskins, R.A., Galle, R.F., et al.: The genome sequence of Drosophila melanogaster. Science 287(5461), 2185–2195 (2000)

    Article  Google Scholar 

  2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-Time Analysis of the Multiarmed Bandit Problem. Springer, Berlin (2002)

    MATH  Google Scholar 

  3. Barrera, J., Coello, C.A.C.: A review of particle swarm optimization methods used for multimodal optimization. In: Innovations in Swarm Intelligence, pp. 9–37. Springer, Berlin (2009)

    Google Scholar 

  4. Bartz-Beielstein, T., Zaefferer, M.: Model-based methods for continuous and discrete global optimization. Appl. Soft Comput. 55, 154–167 (2017)

    Article  Google Scholar 

  5. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies–a comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bradner, E., Iorio, F., Davis, M.: Parameters tell the design story: ideation and abstraction in design optimization. In: Simulation Series (2014)

    Google Scholar 

  7. Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning (2010). Preprint, arXiv:1012.2599

    Google Scholar 

  8. Cantú-Paz, E.: Adaptive sampling for noisy problems. In: Genetic and Evolutionary Computation Conference, pp. 947–958. Springer, Berlin (2004)

    Google Scholar 

  9. Cavicchio, D.J.: Adaptive search using simulated evolution. PhD thesis, University of Michigan, Ann Arbor, MI (1970)

    Google Scholar 

  10. Chatzilygeroudis, K., Vassiliades, V., Mouret, J.-B.: Reset-free trial-and-error learning for robot damage recovery. Rob. Auton. Syst. 100, 236–250 (2018)

    Article  Google Scholar 

  11. Clune, J., Mouret, J.-B., Lipson, H.: The evolutionary origins of modularity. Proc. R. Soc. B Biol. Sci. 280(1755), 20122863 (2013)

    Article  Google Scholar 

  12. Cox, D.D., John, S.: A statistical method for global optimization. In: International Conference on Systems, Man, and Cybernetics, pp. 1241–1246. IEEE, Piscataway (1992)

    Google Scholar 

  13. Cully, A.: Autonomous skill discovery with quality-diversity and unsupervised descriptors. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 81–89. ACM, New York (2019)

    Google Scholar 

  14. Cully, A., Demiris, Y.: Hierarchical behavioral repertoires with unsupervised descriptors. In: Proceedings of the Genetic and Evolutionary Computation Conference (2018)

    Google Scholar 

  15. Cully, A., Demiris, Y.: Quality and diversity optimization: a unifying modular framework. IEEE Trans. Evol. Comput. 22(2), 245–259 (2018)

    Article  Google Scholar 

  16. Cully, A., Mouret, J.-B.: Behavioral repertoire learning in robotics. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 175–182. ACM, New York (2013)

    Google Scholar 

  17. Cully, A., Clune, J., Tarapore, D., Mouret, J.-B.: Robots that can adapt like animals. Nature 521(7553), 503–507 (2015)

    Article  Google Scholar 

  18. Das, S., Maity, S., Qu, B.-Y., Suganthan, P.N.: Real-parameter evolutionary multimodal optimization—a survey of the state-of-the-art. Swarm Evol. Comput. 1, 71–88 (2011)

    Article  Google Scholar 

  19. De Jong, K.A.: Analysis of the behavior of a class of genetic adaptive systems. PhD thesis, University of Michigan, Ann Arbor, MI (1975)

    Google Scholar 

  20. Deb, K., Beyer, H.-G.: Self-adaptive genetic algorithms with simulated binary crossover. Evol. Comput. 9(2), 197–221 (2001)

    Article  Google Scholar 

  21. Deb, K., Saha, A.: Finding multiple solutions for multimodal optimization problems using a multi-objective evolutionary approach. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 447–454 (2010)

    Google Scholar 

  22. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41, 637–676 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Duarte, M., Gomes, J., Oliveira, S.M., Christensen, A.L.: Evolution of repertoire-based control for robots with complex locomotor systems. IEEE Trans. Evol. Comput. 22(2), 314–328 (2018)

    Article  Google Scholar 

  24. Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K.O., Clune, J.: Go-explore: a new approach for hard-exploration problems (2019). Preprint, arXiv:1901.10995

    Google Scholar 

  25. Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K.O., Clune, J.: First return then explore (2020). Preprint, arXiv:2004.12919

    Google Scholar 

  26. Escande, A., Mansard, N., Wieber, P.-B.: Hierarchical quadratic programming: fast online humanoid-robot motion generation. Int. J. Robot. Res. 33(7), 1006–1028 (2014)

    Article  Google Scholar 

  27. Flageat, M., Cully, A.: Fast and stable map-elites in noisy domains using deep grids. In: Proceeding of the Alife Conference (2020)

    Google Scholar 

  28. Fontaine, M.C., Togelius, J., Nikolaidis, S., Hoover, A.K.: Covariance matrix adaptation for the rapid illumination of behavior space. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion (2020)

    Google Scholar 

  29. Gaier, A., Asteroth, A., Mouret, J.-B.: Aerodynamic design exploration through surrogate-assisted illumination. In: 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, pp. 3330 (2017)

    Google Scholar 

  30. Gaier, A., Asteroth, A., Mouret, J.-B.: Data-efficient exploration, optimization, and modeling of diverse designs through surrogate-assisted illumination. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 99–106. ACM, New York (2017)

    Google Scholar 

  31. Gaier, A., Asteroth, A., Mouret, J.-B.: Data-efficient design exploration through surrogate-assisted illumination. Evol. Comput. 26, 1–30 (2018)

    Article  Google Scholar 

  32. Gaier, A., Asteroth, A., Mouret, J.-B.: Discovering representations for black-box optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), vol. 11 (2020)

    Google Scholar 

  33. Goldberg, D.E., Richardson, J., et al.: Genetic algorithms with sharing for multimodal function optimization. In: Genetic Algorithms and Their Applications: Proceedings of the Second International Conference on Genetic Algorithms, pp. 41–49. Lawrence Erlbaum, Hillsdale (1987)

    Google Scholar 

  34. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

    Article  Google Scholar 

  35. Harik, G.R.: Finding multimodal solutions using restricted tournament selection. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 24–31. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  36. Hauschild, M., Pelikan, M.: An introduction and survey of estimation of distribution algorithms. Swarm Evol. Comput. 1(3), 111–128 (2011)

    Article  Google Scholar 

  37. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ju, L., Du, Q., Gunzburger, M.: Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations. Parallel Comput. 28(10), 1477–1500 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Justesen, N., Risi, S., Mouret, J.-B.: Map-elites for noisy domains by adaptive sampling. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 121–122. ACM, New York (2019)

    Google Scholar 

  40. Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary algorithms: Trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2014)

    Article  Google Scholar 

  41. Kent, P., Branke, J.: Bop-elites, a Bayesian optimisation algorithm for quality-diversity search (2020). Preprint, arXiv:2005.04320

    Google Scholar 

  42. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: Bengio, Y., LeCun, Y. (eds.) International Conference on Learning Representation (ICLR) (2014)

    Google Scholar 

  43. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  44. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  45. Lee, C.-G., Cho, D.-H., Jung, H.-K.: Niching genetic algorithm with restricted competition selection for multimodal function optimization. IEEE Trans. Magn. 35(3), 1722–1725 (1999)

    Article  Google Scholar 

  46. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

    Article  Google Scholar 

  47. Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty search and local competition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 211–218. ACM, New York (2011)

    Google Scholar 

  48. Lehman, J., Risi, S., Clune, J.: Creative generation of 3D objects with deep learning and innovation engines. In: Proceedings of the 7th International Conference on Computational Creativity (2016)

    Google Scholar 

  49. Liapis, A., Martınez, H.P., Togelius, J., Yannakakis, G.N.: Transforming exploratory creativity with DeLeNoX. In: Proceedings of the Fourth International Conference on Computational Creativity, pp. 56–63. AAAI Press, Palo Alto (2013)

    Google Scholar 

  50. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proc. 5th Berkeley Symp. on Math. Statist. and Prob., vol. 1, pp. 281–297. Univ. of Calif. Press, Berkeley (1967)

    Google Scholar 

  51. Mahfoud, S.: Niching methods for genetic algorithms. PhD thesis, University of Illinois at Urbana-Champaign, Urbana, IL (1995)

    Google Scholar 

  52. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.: Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. Mouret, J.-B., Clune, J.: Illuminating search spaces by mapping elites (2015). Preprint, arXiv:1504.04909

    Google Scholar 

  54. Mouret, J.-B., Doncieux, S.: Encouraging behavioral diversity in evolutionary robotics: an empirical study. Evol. Comput. 20(1), 91–133 (2012)

    Article  Google Scholar 

  55. Mouret, J.-B., Maguire, G.: Quality diversity for multi-task optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference. ACM, New York (2020)

    Google Scholar 

  56. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 427–436 (2015)

    Google Scholar 

  57. Nguyen, A.M., Yosinski, J., Clune, J.: Innovation engines: automated creativity and improved stochastic optimization via deep learning. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 959–966. ACM, New York (2015)

    Google Scholar 

  58. Nordmoen, J., Samuelsen, E., Ellefsen, K.O., Glette, K.: Dynamic mutation in map-elites for robotic repertoire generation. In: Artificial Life Conference Proceedings, pp. 598–605. MIT Press, Cambridge (2018)

    Google Scholar 

  59. Ong, Y.S., Nair, P.B., Keane, A.J.: Evolutionary optimization of computationally expensive problems via surrogate modeling. AIAA J. 41(4), 687–696 (2003)

    Article  Google Scholar 

  60. Paolo, G., Laflaquiere, A., Coninx, A., Doncieux, S.: Unsupervised learning and exploration of reachable outcome space. Algorithms 24, 25 (2019)

    Google Scholar 

  61. Pearce, M., Branke, J.: Continuous multi-task bayesian optimisation with correlation. Eur. J. Oper. Res. 270(3), 1074–1085 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  62. Pétrowski, A.: A clearing procedure as a niching method for genetic algorithms. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 798–803. IEEE, Piscataway (1996)

    Google Scholar 

  63. Preuss, M.: Multimodal Optimization by Means of Evolutionary Algorithms. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  64. Preuss, M., Schönemann, L., Emmerich, M.: Counteracting genetic drift and disruptive recombination in (\(\mu \overset {+}{,} \lambda \))-EA on multimodal fitness landscapes. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pp. 865–872 (2005)

    Google Scholar 

  65. Pugh, J.K., Soros, L., Szerlip, P.A., Stanley, K.O.: Confronting the challenge of quality diversity. In: Proceedings of the 2015 on Genetic and Evolutionary Computation Conference, pp. 967–974. ACM, New York (2015)

    Google Scholar 

  66. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolutionary computation. Front. Robot. AI 3, 40 (2016)

    Article  Google Scholar 

  67. Rudolph, G.: Self-adaptive mutations may lead to premature convergence. IEEE Trans. Evol. Comput. 5(4), 410–414 (2001)

    Article  Google Scholar 

  68. Sareni, B., Krahenbuhl, L.: Fitness sharing and niching methods revisited. IEEE Trans. Evol. Comput. 2, 97–106 (1998)

    Article  Google Scholar 

  69. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N.: Taking the human out of the loop: a review of bayesian optimization. Proc. IEEE 104(1), 148–175 (2015)

    Article  Google Scholar 

  70. Shir, O., Emmerich, M., Bäck, T., Vrakking, M.: Conceptual designs in laser pulse shaping obtained by niching in evolution strategies. In: EUROGEN 2007 (2007)

    Google Scholar 

  71. Sigmund, O.: A 99 line topology optimization code written in matlab. Struct. Multidiscipl. Optim. 21(2), 120–127 (2001)

    Article  Google Scholar 

  72. Singh, G., Deb, K.: Comparison of multi-modal optimization algorithms based on evolutionary algorithms. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 1305–1312 (2006)

    Google Scholar 

  73. Srinivas, N., Krause, A., Kakade, S., Seeger, M.: Gaussian process optimization in the bandit setting: no regret and experimental design. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, pp. 1015–1022 (2010)

    Google Scholar 

  74. Tarapore, D., Clune, J., Cully, A., Mouret, J.-B.: How do different encodings influence the performance of the map-elites algorithm? In: Genetic and Evolutionary Computation Conference (2016)

    Google Scholar 

  75. Vassiliades, V., Mouret, J.-B.: Discovering the elite hypervolume by leveraging interspecies correlation. In: Proceedings of the Genetic and Evolutionary Computation Conference (2018)

    Google Scholar 

  76. Vassiliades, V., Chatzilygeroudis, K., Mouret, J.-B.: Comparing multimodal optimization and illumination. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 97–98. ACM, New York (2017)

    Google Scholar 

  77. Vassiliades, V., Chatzilygeroudis, K., Mouret, J.-B.: A comparison of illumination algorithms in unbounded spaces. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1578–1581. ACM, New York (2017)

    Google Scholar 

  78. Vassiliades, V., Chatzilygeroudis, K., Mouret, J.-B.: Using centroidal Voronoi tessellations to scale up the multidimensional archive of phenotypic elites algorithm. IEEE Trans. Evol. Comput. 22(4), 623–630 (2018)

    Article  Google Scholar 

  79. Williams, C.K., Rasmussen, C.E.: Gaussian Processes for Machine Learning, vol. 2. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  80. Yin, X., Germay, N.: A fast genetic algorithm with sharing scheme using cluster analysis methods in multimodal function optimization. In: Artificial Neural Nets and Genetic Algorithms, pp. 450–457. Springer, Berlin (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Chatzilygeroudis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chatzilygeroudis, K., Cully, A., Vassiliades, V., Mouret, JB. (2021). Quality-Diversity Optimization: A Novel Branch of Stochastic Optimization. In: Pardalos, P.M., Rasskazova, V., Vrahatis, M.N. (eds) Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. Springer Optimization and Its Applications, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-030-66515-9_4

Download citation

Publish with us

Policies and ethics