Skip to main content

Using Physical Factory Simulation Models for Business Process Management Research

Part of the Lecture Notes in Business Information Processing book series (LNBIP,volume 397)

Abstract

The production and manufacturing industries are currently transitioning towards more autonomous and intelligent production lines within the Fourth Industrial Revolution (Industry 4.0). Learning Factories as small scale physical models of real shop floors are realistic platforms to conduct research in the smart manufacturing area without depending on expensive real world production lines or completely simulated data. In this work, we propose to use learning factories for conducting research in the context of Business Process Management (BPM) and Internet of Things (IoT) as this combination promises to be mutually beneficial for both research areas. We introduce our physical Fischertechnik factory models simulating a complex production line and three exemplary use cases of combining BPM and IoT, namely the implementation of a BPM abstraction stack on top of a learning factory, the experience-based adaptation and optimization of manufacturing processes, and the stream processing-based conformance checking of IoT-enabled processes.

Keywords

  • Cyber-physical production systems
  • Factory simulation models
  • Business process management
  • Industry 4.0
  • Digital twins

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-66498-5_8
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-66498-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    https://smartfactory.de/.

  2. 2.

    https://www.fischertechnik.de/en/simulating/industry-4-0.

  3. 3.

    https://iot.uni-trier.de.

  4. 4.

    https://www.uni-ulm.de/in/iui-dbis/forschung/laufende-projekte/dbisfactory/.

  5. 5.

    https://wst.cs.univie.ac.at/research/projects/project/292/.

  6. 6.

    https://camunda.com/.

  7. 7.

    https://siddhi.io/.

References

  1. Abele, E., et al.: Learning factories for future oriented research and education in manufacturing. CIRP Ann. 66(2), 803–826 (2017)

    CrossRef  Google Scholar 

  2. Baumgrass, A., et al.: GET controller and UNICORN: event-driven process execution and monitoring in logistics. In: Proceedings of the Demo Session at 13th International Conference on BPM, vol. 1418, pp. 75–79. CEUR-WS.org (2015)

    Google Scholar 

  3. Bergmann, R., Grumbach, L., Malburg, L., Zeyen, C.: ProCAKE: a process-oriented case-based reasoning framework. In: Workshop Proceedings of ICCBR 2019, vol. 2567, pp. 156–161. CEUR-WS.org (2019)

    Google Scholar 

  4. Bergmann, R., Müller, G.: Similarity-based retrieval and automatic adaptation of semantic workflows. In: Nalepa, G.J., Baumeister, J. (eds.) Synergies Between Knowledge Engineering and Software Engineering. AISC, vol. 626, pp. 31–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64161-4_2

    CrossRef  Google Scholar 

  5. Boschert, S., Rosen, R.: Digital twin—the simulation aspect. In: Hehenberger, P., Bradley, D. (eds.) Mechatronic Futures, pp. 59–74. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32156-1_5

    CrossRef  Google Scholar 

  6. Broy, M., Cengarle, M.V., Geisberger, E.: Cyber-physical systems: imminent challenges. In: Calinescu, R., Garlan, D. (eds.) Monterey Workshop 2012. LNCS, vol. 7539, pp. 1–28. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34059-8_1

    CrossRef  Google Scholar 

  7. Chang, C., Srirama, S.N., Buyya, R.: Mobile cloud business process management system for the internet of things: a survey. ACM Comput. Surv. 49(4), 70:1–70:42 (2017). https://doi.org/10.1145/3012000

  8. Janiesch, C., et al.: The internet-of-things meets business process management: a manifesto. IEEE Syst. Man Cybern. Mag 6(4), 34–44 (2020). https://doi.org/10.1109/MSMC.2020.3003135

    CrossRef  Google Scholar 

  9. Klein, P., Bergmann, R.: Generation of complex data for AI-based predictive maintenance research with a physical factory model. In: 16th International Conference on Informatics in Control Automatic and Robotics, pp. 40–50. SciTePress (2019). https://dblp.uni-trier.de/rec/conf/icinco/KleinB19.html?view=bibtex

  10. Klein, P., Malburg, L., Bergmann, R.: FTOnto: a domain ontology for a Fischertechnik simulation production factory by reusing existing ontologies. In: Proceedings of the Conference LWDA, vol. 2454, pp. 253–264. CEUR-WS.org (2019)

    Google Scholar 

  11. Lasi, H., et al.: Industry 4.0. BISE 6(4), 239–242 (2014). https://doi.org/10.1007/s12599-014-0334-4

  12. Malburg, L., Klein, P., Bergmann, R.: Semantic web services for AI-research with physical factory simulation models in industry 4.0. In: Proceedings of the 1st International Conference on Innovation Intelligent Industrial Production and Logistics (IN4PL), SciTePress (2020). https://www.scitepress.org/PublicationsDetail.aspx?ID=sGMzXE6q768=&t=1

  13. Mangler, J., Pauker, F., Rinderle-Ma, S., Ehrendorfer, M.: Centurio work - industry 4.0 integration assessment and evolution. In: Proceedings Industry Forum at BPM 2019, vol. 2428, pp. 106–117. CEUR-WS.org (2019)

    Google Scholar 

  14. Marrella, A., Mecella, M., Sardiña, S.: Intelligent process adaptation in the SmartPM system. ACM Trans. Intell. Syst. Technol. 8(2), 25:1–25:43 (2017). https://doi.org/10.1145/2948071

  15. Marrella, A., Mecella, M., Sardiña, S.: Supporting adaptiveness of cyber-physical processes through action-based formalisms. AI Commun. 31(1), 47–74 (2018). https://doi.org/10.3233/AIC-170748

    MathSciNet  CrossRef  Google Scholar 

  16. Meroni, G., Di Ciccio, C., Mendling, J.: An artifact-driven approach to monitor business processes through real-world objects. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 297–313. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3_21

    CrossRef  Google Scholar 

  17. Minor, M., Montani, S., Recio-García, J.A.: Process-oriented case-based reasoning. Inf. Syst. 40, 103–105 (2014)

    CrossRef  Google Scholar 

  18. Monostori, L.: Cyber-physical production systems: roots expectations and R&D challenges. Procedia CIRP 17, 9–13 (2014)

    CrossRef  Google Scholar 

  19. Müller, G.: Workflow Modeling Assistance by Case-based Reasoning. Springer, Wiesbaden (2018)

    CrossRef  Google Scholar 

  20. Prinz, C., et al.: Learning Factory Modules for Smart Factories in Industrie 4.0. Procedia CIRP 54, 113–118 (2016)

    Google Scholar 

  21. Rehse, J.R., Dadashnia, S., Fettke, P.: Business process management for Industry 4.0 - three application cases in the DFKI-smart-Lego-factory. It - Inf. Technol. 60(3), 133–141 (2018). https://doi.org/10.1515/itit-2018-0006

  22. Rossit, D.A., Tohmé, F., Frutos, M.: Production planning and scheduling in cyber-physical production systems: a review. Int. J. Computer Integr. Manuf. 32(4–5), 385–395 (2019). https://doi.org/10.1080/0951192X.2019.1605199

    CrossRef  Google Scholar 

  23. Rüßmann, M., et al.: Industry 4.0: The future of productivity and growth in manufacturing industries. Boston Consult. Group 9(1), 54–89 (2015)

    Google Scholar 

  24. Schönig, S., Ackermann, L., Jablonski, S., Ermer, A.: IoT meets BPM: a bidirectional communication architecture for IoT-aware process execution. Softw. Syst. Model. 19(6), 1443–1459 (2020). https://doi.org/10.1007/s10270-020-00785-7

    CrossRef  Google Scholar 

  25. Seiger, R., Huber, S., Heisig, P., Aßmann, U.: Toward a framework for self-adaptive workflows in cyber-physical systems. Softw. Syst. Model. 18(2), 1117–1134 (2019)

    CrossRef  Google Scholar 

  26. Simons, S., Abé, P., Neser, S.: Learning in the AutFab - the fully automated industrie 4.0 learning factory of the university of applied sciences darmstadt. Procedia Manuf. 9, 81–88 (2017)

    Google Scholar 

  27. van der Aalst, W., et al.: Process Mining Manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_19

    CrossRef  Google Scholar 

  28. Wieland, M., Schwarz, H., Breitenbucher, U., Leymann, F.: Towards situation-aware adaptive workflows: SitOPT - a general purpose situation-aware workflow management system. In: International Conference on Pervasive Computing and Communications Workshops, pp. 32–37. IEEE (2015). https://doi.org/10.1109/PERCOMW.2015.7133989

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Malburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Malburg, L., Seiger, R., Bergmann, R., Weber, B. (2020). Using Physical Factory Simulation Models for Business Process Management Research. In: Del Río Ortega, A., Leopold, H., Santoro, F.M. (eds) Business Process Management Workshops. BPM 2020. Lecture Notes in Business Information Processing, vol 397. Springer, Cham. https://doi.org/10.1007/978-3-030-66498-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66498-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66497-8

  • Online ISBN: 978-3-030-66498-5

  • eBook Packages: Computer ScienceComputer Science (R0)