Skip to main content

Bahía Blanca Estuary: A Chemical Oceanographic Approach

  • Chapter
  • First Online:
The Bahía Blanca Estuary

Abstract

The dynamics, relationships, and equilibrium of estuaries can be significantly disturbed as a result of natural processes or human interventions that generate modifications (from circumstantial to structural) in the balance of their activities. Each type of environment has particular characteristics conditioning the reaction to these changes. The estuary of Bahía Blanca, in the south of the Buenos Aires Atlantic coast, is an excellent case of study, as it constitutes a large transitional environment, where an intense human intervention takes place. This environment has been particularly studied since the 1970s, including the physical-chemical parameters of its waters, associated biological processes, and the presence of pollutants. These studies allow us to characterize the potential effects on the system and recognize its capacity to react. The trends identified are analyzed in a historical framework, which allows us to indicate evolutionary processes in the environmental quality of the estuary. Moreover, this information could be very useful to design management plans for the estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andrade S, Pucci AE, Marcovecchio JE (2000) Cadmium concentrations in the Bahía Blanca estuary (Argentina). Potential effects of dissolved cadmium on the diatom Thalassiosira curviseriata. Oceanologia 42:505–520

    Google Scholar 

  • Arias AH (2008) Comportamiento de los hidrocarburos aromáticos policíclicos (PAHs) en aguas, sedimentos y organismos de la zona interna del estuario de Bahía Blanca. Doctoral Thesis, Universidad Nacional del Sur (UNS). Bahía Blanca (Argentina), 178 pp

    Google Scholar 

  • Arias AH, Spetter CV, Freije RH et al (2009) Polycyclic aromatic hydrocarbons in water, mussels (Brachidontes sp., Tagelus sp.) and fish (Odontesthes sp.) from Bahía Blanca Estuary, Argentina. Estuar Coast Mar Sci 85(1):67–81. https://doi.org/10.1016/j.ecss.2009.06.008

    Article  CAS  Google Scholar 

  • Arias AH, Vázquez-Botello A, Tombesi N et al (2010) Presence, distribution, and origins of polycyclic aromatic hydrocarbons (PAHs) in sediments from Bahía Blanca estuary, Argentina. Environ Monit Assess 160(1–4):301–314. https://doi.org/10.1007/s10661-008-0696-5

    Article  CAS  PubMed  Google Scholar 

  • Arias AH, Pereyra MT, Marcovecchio JE (2011) Multi-year monitoring of estuarine sediments as ultimate sink for DDT, HCH, and other organochlorinated pesticides in Argentina. Environ Monit Assess 172(1–4):17–32. https://doi.org/10.1007/s10661-010-1315-9

    Article  CAS  PubMed  Google Scholar 

  • Arias AH, Piccolo MC, Spetter CV et al (2012) Lessons from multi-decadal oceanographic monitoring at an estuarine ecosystem in Argentina. Int J Environ Res 6(1):219–234. https://doi.org/10.22059/IJER.2011.488

    Article  CAS  Google Scholar 

  • Arias AH, Ronda A, Oliva AL et al (2019) Evidence of microplastic ingestion by fish from the Bahía Blanca estuary in Argentina, South America. B Environ Contam Tox 102(6):750–756. https://doi.org/10.1007/s00128-019-02604-2

    Article  CAS  Google Scholar 

  • Avio CG, Gorbi S, Regoli F (2017) Plastics and microplastics in the oceans: from emerging pollutants to emerged threat. Mar Environ Res 128:2–11. https://doi.org/10.1016/j.marenvres.2016.05.012

    Article  CAS  PubMed  Google Scholar 

  • Balvanera P, Pfisterer AB, Buchmann N et al (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156. https://doi.org/10.1111/j.1461-0248.2006.00963.x

    Article  PubMed  Google Scholar 

  • Barletta M, Valença Dantas D (2016) Environmental gradients. In: Kennish MJ (ed) Encyclopedia of estuaries. Springer, Heidelberg, pp 237–241. 778 pp. ISBN:978-94-017-8800-7

    Chapter  Google Scholar 

  • Bergman A, Heindel JJ, Jobling S et al (eds) (2012) State of the science of endocrine disrupting chemicals. UNEP (United Nations Environment Programme)-WHO (World Health Organization), Geneve. 213 pp. ISBN:978-92-807-3274-0

    Google Scholar 

  • Borja A, Dauer DM, Elliott M et al (2015) Medium- and long-term recovery of estuarine and coastal ecosystems: patterns, rates and restoration effectiveness. Estuaries Coast 33:1249–1260. https://doi.org/10.1007/s12237-010-9347-5

    Article  Google Scholar 

  • Botté SE, Freije RH, Marcovecchio JE (2008) Dissolved heavy metal (Cd, Pb, Cr, Ni) concentrations in surface water and porewater from Bahia Blanca estuary tidal flats. B Environ Contam Tox 79(4):415–421. https://doi.org/10.1007/s00128-007-9231-6

    Article  CAS  Google Scholar 

  • Botté SE, Delucchi F, Freije RH et al (2010a) Chapter 11: Cadmium and organotin pollution in an estuarine environment from Argentina: and overview. In: El Nemr A (ed) Impact, monitoring and management of environmental pollution. Nova Publishers, New York, pp 263–283. ISBN:978-1-60876-487-7

    Google Scholar 

  • Botté SE, Freije RH, Marcovecchio JE (2010b) Distribution of several heavy metals in tidal flats sediments within Bahía Blanca Estuary (Argentina). Water Air Soil Pollut 210:371–388. https://doi.org/10.1007/s11270-009-0260-0

    Article  CAS  Google Scholar 

  • Bowman MJ (2018) Chapter 7: Estuarine fronts. In: Kjerfve B (ed) Hydrodynamics of estuaries, Vol.1: Estuarine physics. CRC Press – Taylor and Francis Group, Boca Ratón, pp 85–131. 227 pp. ISBN:0-8493-4370-4

    Chapter  Google Scholar 

  • Breitburg DL, Hondorp D, Audemard C et al (2015) Landscape-level variation in disease susceptibility related to shallow-water hypoxia. PLoS One 10(2):e0116223. https://doi.org/10.1371/journal.pone.0116223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzzi NS, Marcovecchio JE (2018) Heavy metal concentrations in sediments and in mussels from Argentinean coastal environments, South America. Environ Earth Sci 77:321–333. https://doi.org/10.1007/s12665-018-7496-1

    Article  CAS  Google Scholar 

  • Cairns J Jr (2009) Chapter 1: The influence of contaminated sediments on sustainable use of the planet. In: Kassim TA, Barceló D (eds) Contaminated sediments. Springer, Heidelberg, pp 1–19. 193 pp. ISBN: 978-3-540-88013-4

    Google Scholar 

  • Chen Z, Hu C, Muller-Karger F (2007) Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery. Remote Sens Environ 109:207–220. https://doi.org/10.1016/j.rse.2006.12.019

    Article  Google Scholar 

  • Cifuentes O, Escudero D, Medus S et al (2011) Estudio de la dinámica (espacial y temporal) de los efluentes líquidos industriales y urbanos en la zona del Polo Petroquímico y área portuaria de Bahía Blanca. En: Puliefito E (ed) Contaminación atmosférica e hídrica en Argentina. (EdUTecNe), Buenos Aires, pp 539–545

    Google Scholar 

  • Cloern JE, Jassby AD (2010) Patterns and scales of phytoplankton variability in estuarine-coastal ecosystems. Estuar Coasts 33:230–241. https://doi.org/10.1007/s12237-009-9195-3

    Article  CAS  Google Scholar 

  • Cloern JE, Jassby AD, Tara S et al (2017) Ecosystem variability along the estuarine salinity gradient: examples from long-term study of San Francisco Bay. Limnol Oceanogr 62:272–291. https://doi.org/10.1002/lno.10537

    Article  CAS  Google Scholar 

  • CTE (Comité Técnico Ejecutivo – Municipalidad de Bahía Blanca) (2003) Programa integral de monitoreo Bahía Blanca. http://www.bahiablanca.gov.ar/areas-de-gobierno/medioambiente/comite-tecnicoejecutivo/

  • Cuadrado D, Perillo GME, Marcos A (1994) Análisis preliminar del transporte del sedimento en suspension en Puerto Rosales. V Reunión Argentina de Sedimentología:229–234

    Google Scholar 

  • De Marco SD, Botté SE, Marcovecchio JE (2006) Mercury distribution in abiotic and biological compartments within several estuarine systems from Argentina: 1980–2005 period. Chemosphere 65(2):213–233. https://doi.org/10.1016/j.chemosphere.2006.02.059

    Article  CAS  PubMed  Google Scholar 

  • de Silva Samarasinghe JR, Lennon GW (1987) Hypersalinity, flushing and transient salt-wedges in a tidal gulf: an inverse estuary. Estuar Coast Shelf Sci 24:483–498. https://doi.org/10.1016/0272-7714(87)90129-6

    Article  Google Scholar 

  • de Souza Machado AA, Spencer K, Kloas W et al (2016) Metal fate and effects in estuaries: a review and conceptual model for better understanding of toxicity. Sci Total Environ 541:268–281. https://doi.org/10.1016/j.scitotenv.2015.09.045

    Article  CAS  PubMed  Google Scholar 

  • Feely RA, Alin SR, Newton J et al (2010) The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar Coast Shelf Sci 88:442–449. https://doi.org/10.1016/j.ecss.2010.05.004

    Article  CAS  Google Scholar 

  • Fernández Severini MD, Carbone ME, Villagran DM et al (2018) Toxic metals in a highly urbanized industry-impacted estuary (Bahía Blanca Estuary, Argentina): spatio-temporal analysis based on GIS. Environ Earth Sci 77(10):393–416. https://doi.org/10.1007/s12665-018-7565-5

    Article  CAS  Google Scholar 

  • Fernández EM, Garzón CJE, Martínez AM et al (2014) Estimación de la productividad primaria del fitoplancton en la zona interna del estuario de Bahía Blanca. In: Marcovecchio JE, Botté SE, Freije RH (eds) Procesos Geoquímicos Superficiales en Iberoamérica. Sociedad Iberoamericana de Física y Química Ambiental (SIFyQA), Salamanca, pp 261–278. ISBN:978-84-937437-6-5

    Google Scholar 

  • Förstner U, Ahlf W, Calmano W et al (1990) Part II, Chapter 18: Sediments criteria development. In: Heling D, Rothe P, Förstner U et al (eds) Sediments and environmental geochemistry. Springer, Berlin, pp 311–338. 381 pp. ISBN-13:978-3-642-75099-1

    Chapter  Google Scholar 

  • Freije RH, Gayoso AM (1988) Producción primaria del estuario de Bahía Blanca. Informes UNESCO, Ciencias del Mar 47:112–114

    Google Scholar 

  • Freije RH, Marcovecchio JE (2004) Chapter 8: Oceanografía química del estuario de Bahía Blanca. En: Piccolo MC, Hoffmeyer MS (eds) El ecosistema del estuario de Bahía Blanca. Instituto Argentino de Oceanografía (IADO – CONICET/UNS), Bahía Blanca, 69–78. ISBN:987-9281-96-9

    Google Scholar 

  • Freije RH, Spetter CV, Marcovecchio JE et al (2008) Chapter 23: Water chemistry and nutrients of the Bahía Blanca Estuary. In: Neves R, Baretta J, Mateus M (eds) Perspectives on Integrated Coastal Zone Management in South America. Part B: From shallow water to the deep fjord: the study sites. IST Scientific Publishers, Lisbon, pp 243–256. ISBN:978-972-8469-74-0

    Google Scholar 

  • Gago J, Carretero O, Filgueiras AV, Viñas L (2018) Synthetic microfibers in the marine environment: A review on their occurrence in seawater and sediments. Marine pollution bulletin, 127:365–376

    Google Scholar 

  • Garaba SP, Zielinski O (2015) An assessment of water quality monitoring tools in an estuarine system. Remote Sens Environ 109(2):207–220. https://doi.org/10.1016/j.rse.2006.12.019

    Article  Google Scholar 

  • Gautam RK, Sharma SK, Suresh Mahiya S et al (2014) Chapter 1: Contamination of heavy metals in aquatic media: transport, toxicity and technologies for remediation. In: Sharma SK (ed) Heavy metals in water – presence, removal and safety. The Royal Society of Chemistry, Cambridge, pp 1–24. 380 pp. ISBN:978-1-84973-885-9

    Google Scholar 

  • Gayoso AM (1983) Estudio de Fitoplancton del Estuario de Bahía Blanco:(Pcia. de Buenos Aires, Argentina). Zona interna. Puerto Cuatreros. Studia oecológica (2):73–88

    Google Scholar 

  • Gayoso AM (1998) Long-term phytoplankton studies in the Bahías Blanca estuary, Argentina. ICES Journal of Marine Sciences 55:655–660

    Google Scholar 

  • Gayoso AM (1998a) Estudio de Fitoplancton del Estuario de Bahía Blanco (Pcia. de Buenos Aires, Argentina). Zona interna: Puerto Cuatreros. Stud Oecol 2(2):73–88. ISSN:0211-4623

    Google Scholar 

  • Gayoso AM (1998b) Long-term phytoplankton studies in the Bahía Blanca Estuary, Argentina. ICES J Mar Sci 55:655–660. https://doi.org/10.1006/jmsc.1998.0375

    Article  Google Scholar 

  • Gayoso AM (1999) Seasonal succession patterns of phytoplankton in the Bahía Blanca Estuary (Argentina). Bot Mar 42(4):367–375. https://doi.org/10.1515/bot.1999.042

    Article  Google Scholar 

  • Gillanders BM, Elsdon TS, Halliday IA et al (2015) Potential effects of climate change on Australian estuaries and fish utilising estuaries: a review. Mar Freshw Res 62:1115–1131. https://doi.org/10.1071/MF11047

    Article  Google Scholar 

  • Gironés L, Oliva AL, Marcovecchio JE et al (2020) Spatial distribution and ecological risk assessment of residual organochlorine pesticides (OCPs) in South American marine environments. Curr Environ Health Rep:1–14. https://doi.org/10.1007/s40572-020-00272-7

  • Govind P, Madhuri S (2014) Heavy metals causing toxicity in animals and fishes. Res J Anim Vet Fish Sci 2(2):17–23. ISSN:2320-6535

    Google Scholar 

  • Grimm NB, Stuart Chapin FS, Bierwagen B et al (2013) The impacts of climate change on ecosystem structure and function. Front Ecol Environ 11(9):474–482. https://doi.org/10.1890/120282

    Article  Google Scholar 

  • Gross TS, Arnold BS, Sepúlveda MS et al (2002) Chapter 39: Endocrine disrupting chemicals and endocrine active agents. In: Hoffman DJ, Rattner B, Burton GAJ et al (eds) Handbook of ecotoxicology. CRC Press, Boca Raton, pp 1033–1098. 1315 pp. ISBN:1-56670-546-0

    Google Scholar 

  • Guinder VA, Popovich CA, Perillo GME (2009) Particulate suspended matter concentrations in the Bahía Blanca estuary, Argentina: implication for the development of phytoplankton blooms. Estuar Coast Shelf Sci 85(1):157–165. https://doi.org/10.1016/j.ecss.2009.05.022

    Article  CAS  Google Scholar 

  • Guinder VA, Molinero JC, Popovich CA et al (2012) Dominance of the planktonic diatom Thalassiosira minima in recent summers in the Bahía Blanca Estuary, Argentina. J Plankton Res 34(11):995–1000. https://doi.org/10.1093/plankt/fbs060

    Article  Google Scholar 

  • Guinder VA, Popovich CA, Molinero JC et al (2013) Phytoplankton summer bloom dynamics in the Bahía Blanca Estuary in relation to changing environmental conditions. Cont Shelf Res 52:150–158. https://doi.org/10.1016/j.csr.2012.11.010

    Article  Google Scholar 

  • Guinder VA, López-Abbate MC, Berasategui AA et al (2015) Influence of the winter phytoplankton bloom on the settled material in a temperate shallow estuary. Oceanologia 57:50–60. https://doi.org/10.1016/j.oceano.2014.10.002

    Article  Google Scholar 

  • Guinder VA, Molinero JC, López Abbate MC et al (2017) Phenological changes of blooming diatoms promoted by compound bottom-up and top-down controls. Estuar Coast 40:95–104. https://doi.org/10.1007/s12237-016-0134-9

    Article  Google Scholar 

  • Hansen J, Ruedy R, Sato M et al (2010) Global surface temperature change. Rev Geophys 48:RG4004. https://doi.org/10.1029/2010RG000345

    Article  Google Scholar 

  • Harris LA, Hodgkins CLS, Day MC et al (2015) Optimizing recovery of eutrophic estuaries: impact of estratification and re-aeration on nutrient and dissolved oxygen dynamics. Ecol Eng 75:470–483. https://doi.org/10.1016/j.ecoleng.2014.11.028

    Article  Google Scholar 

  • Hartmann NB, Rist S, Bodin J et al (2017) Microplastics as vectors for environmental contaminants: exploring sorption, desorption, and transfer to biota. Integr Environ Asses 13(3):488–493. https://doi.org/10.1002/ieam.1904

    Article  Google Scholar 

  • Hester RE, Harrison RM (eds) (2007) Biodiversity under threat. Royal Society of Chemistry, Cambridge. 291 pp. ISBN:978-0-85404-251-7

    Google Scholar 

  • Hübner R, Astin KB, Herbert RJH (2009) Comparison of sediment quality guidelines (SQGs) for the assessment of metal contamination in marine and estuarine environments. J Environ Monit 11:713–722. https://doi.org/10.1039/b818593j

    Article  CAS  PubMed  Google Scholar 

  • IADO (1999) Programa de monitoreo de la calidad ambiental de la zona interior del estuario de Bahía Blanca. Informe Final, Instituto Argentino de Oceanografía, 25 + 68 pp. Available in: http://www.bahiablanca.gov.ar/cte/index.html

  • IADO (2002) Programa de monitoreo de la calidad ambiental de la zona interior del estuario de Bahía Blanca. Informe Final, Instituto Argentino de Oceanografía: 76 pp. Available in.: http://www.bahiablanca.gov.ar/cte/index.html

  • IADO (2006) Programa de monitoreo de la calidad ambiental de la zona interior del estuario de Bahía Blanca. Informe Final, Instituto Argentino de Oceanografía, 82 pp. Available in: http://www.bahiablanca.gov.ar/cte/index.html

  • IADO (2008) Programa de monitoreo de la calidad ambiental de la zona interior del estuario de Bahía Blanca. Informe Final, Instituto Argentino de Oceanografía, 107 pp. Available in: http://www.bahiablanca.gov.ar/cte/index.html

  • IADO (2009) Programa de monitoreo de la calidad ambiental de la zona interior del estuario de Bahía Blanca. Informe Final, Instituto Argentino de Oceanografía, 103 pp. Available in: http://www.bahiablanca.gov.ar/cte/index.html

  • IADO (2010) Programa de monitoreo de la calidad ambiental de la zona interior del estuario de Bahía Blanca. Adenda al Informe Final 2009, Instituto Argentino de Oceanografía, 92 pp. Available in: http://www.bahiablanca.gov.ar/cte/index.html

  • IADO (2012) Programa de monitoreo de la calidad ambiental de la zona interior del estuario de Bahía Blanca. Informe Final, Instituto Argentino de Oceanografía, 122 pp. Available in: http://www.bahiablanca.gov.ar/cte/index.html

  • IADO (2014) Programa de monitoreo de la calidad ambiental de la zona interior del estuario de Bahía Blanca. Informe Final, Instituto Argentino de Oceanografía, 242 pp. Available in: http://www.bahiablanca.gov.ar/cte/index.html

  • IADO (2016) Programa de monitoreo de la calidad ambiental de la zona interior del estuario de Bahía Blanca. Informe Final, Instituto Argentino de Oceanografía, 228 pp. Available in: http://www.bahiablanca.gov.ar/cte/index.html

  • IADO (2018) Programa de monitoreo de la calidad ambiental de la zona interior del estuario de Bahía Blanca. Informe Final, Instituto Argentino de Oceanografía, 364 pp. Available in: http://www.bahiablanca.gov.ar/cte/index.html

  • IADO (Instituto Argentino de Oceanografía, CONICET/UNS) (1997) Programa de monitoreo de la calidad ambiental de la zona interior del estuario de Bahía Blanca. Informe Final, Instituto Argentino de Oceanografía, 65 pp. Available in: http://www.bahiablanca.gov.ar/cte/index.html

  • INDEC (2010) Instituto Nacional de Estadística y Censos, Argentina. http://www.indec.gov.ar

  • IPCC (Intergovernmental Panel on Climate Change) (2018) Global warming of 1.5°C: an IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Masson-Delmotte V, Zhai P, Pörtner H-O et al (eds) (in press)

    Google Scholar 

  • Iwata H, Tanabe S, Sakai N et al (1993) Distribution of persistent organochlorines in the oceanic air and surface seawater and the role of ocean on their global transport and fate. Environ Sci Technol 27:1080–1098. https://doi.org/10.1021/es00043a007

    Article  CAS  Google Scholar 

  • James NC, van Niekerk L, Whitfield AK, Potts WM, Götz A, Paterson AW (2013) Effects of climate change on South African estuaries and associated fish species. Clim Res 57:233–248. https://doi.org/10.3354/cr01178

    Article  Google Scholar 

  • Jezierska B, Ługowska K, Witeska M (2009) The effects of heavy metals on embryonic development of fish (a review). Fish Physiol Biochem 35:625–640. https://doi.org/10.1007/s10695-008-9284-4

    Article  CAS  PubMed  Google Scholar 

  • Kalnejais LH, Martin WR, Bothner MH (2010) The release of dissolved nutrients and metals from coastal sediments due to resuspension. Mar Chem 121(1–4):224–235. https://doi.org/10.1016/j.marchem.2010.05.002

    Article  CAS  Google Scholar 

  • Kennish MJ (ed) (2019) Ecology of estuaries. Vol 2: Biological aspects. CRC Press – Taylor & Francis Publ.Co, Boca Raton. 276 pp. ISBN:0-8493-5892-2

    Google Scholar 

  • Kent RD, Vikesland PJ (2016) Dissolution and persistence of copper-based nanomaterials in undersaturated solutions with respect to cupric solid phases. Environ Sci Technol 50:6772–6781. https://doi.org/10.1021/acs.est.5bo4719

    Article  CAS  PubMed  Google Scholar 

  • Kwok KWH, Batley GE, Wenning RJ et al (2013) Sediment quality guidelines: challenges and opportunities for improving sediment management. Environ Sci Pollut R 21(1):17–27. https://doi.org/10.1007/s11356-013-1778-7

    Article  Google Scholar 

  • La Colla N, Franco M, Serra A et al (2014) Saltmarshes: an approach to organic matter contribution in sediments through isotopic signature. In: III Reunión Argentina de Geoquímica de la Superficie (III RAGSU), Mar del Plata (Pcia. de Buenos Aires, Argentina), 02-05/DIC/2014. ISBN:978-987-544-598-7

    Google Scholar 

  • La Colla NS, Negrin VL, Marcovecchio JE et al (2015) Dissolved and particulate metals dynamics in a human impacted estuary from the SW Atlantic. Estuar Coast Shelf Sci 166:45–55. https://doi.org/10.1016/j.ecss.2015.05.009

    Article  CAS  Google Scholar 

  • La Colla NS, Botté SE, Negrin VL et al (2018a) Influence of human-induced pressures on dissolved and particulate Pb, Cr, Zn and Ni concentrations in the Bahía Blanca estuary, South America. Environ Monit Assess 190:532–547. https://doi.org/10.1007/s10661-018-6930-x

    Article  CAS  PubMed  Google Scholar 

  • La Colla N, Botté SE, Marcovecchio JE (2018b) Metals in coastal zones impacted with urban and industrial wastes: insights on the metal accumulation pattern in fish species. J Mar Syst 181:53–62. https://doi.org/10.1016/j.jmarsys.2018.01.012

    Article  Google Scholar 

  • La Colla NS, Botté SE, Marcovecchio JE (2019) Mercury cycling and bioaccumulation in a changing coastal system: from water to aquatic organisms. Mar Pollut Bull 140:40–50. https://doi.org/10.1016/j.marpolbul.2018.12.051

    Article  CAS  PubMed  Google Scholar 

  • Lailson-Brito J, Dorneles PR, Azevedo-Silva CE et al (2010) High organochlorine accumulation in blubber of Guiana dolphin, Sotalia guianensis, from Brazilian coast and its use to establish geographical differences among populations. Environ Pollut 158:1800–1808. https://doi.org/10.1016/j.envpol.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  • Limbozzi F, Leitào TE (2008) Chapter 31: Characterization of Bahía Blanca main existing pressures and their effects on the state indicators for surface and groundwater quality. In: Neves R, Baretta J, Mateus M (eds) Perspectives on integrated coastal zone management in South America. IST Scientific Publishers, Lisbon, pp 333–350. ISBN:978-972-8469-74-0

    Google Scholar 

  • López Abbate MC, Molinero JC, Guinder VA et al (2015) Microplankton dynamics under heavy anthropogenic pressure. The case of the Bahía Blanca Estuary, southwestern Atlantic Ocean. Mar Pollut Bull 95(1):305–314. https://doi.org/10.1016/j.marpolbul.2015.03.026

    Article  CAS  PubMed  Google Scholar 

  • Marcovecchio JE (1988) Estudio comparativo de la distribución de los metales traza mercurio, cadmio y zinc en organismos de dos zonas estuariales de Argentina: Bahía Blanca y desembocadura del Rio de la Plata. Doctoral thesis, Mar del Plata National University, 212 pp

    Google Scholar 

  • Marcovecchio JE (2001) Impact of freshwater on coastal estuaries: South America Atlantic littoral. In: Buddemeier RW, Crossland C, Maxwell B et al (eds) LOICZ/UNEP Regional Shyntesis Programme: Australasia-Asia, The Americas, Africa-Europe. Summary Report and Compendium. LOICZ Reports & Studies N°22, 77 pp. ISSN:1383-4304

    Google Scholar 

  • Marcovecchio JE, Ferrer LD (2005) Distribution and geochemical partitioning of heavy metals in sediments of the Bahía Blanca estuary, Argentina. J Coast Res 21(4):826–834. https://doi.org/10.2112/014-NIS.1

    Article  Google Scholar 

  • Marcovecchio JE, Freije RH (2004) Efectos de la intervención antrópica sobre sistemas marinos costeros: el estuario de Bahía Blanca, vol 56. Anales de la Academia Nacional de Ciencias Exactas, Físicas y Naturales (ANCEFN), Buenos Aires, pp 115–132. ISSN:0365-1185

    Google Scholar 

  • Marcovecchio JE, Freije RH (eds) (2013) Procesos Químicos en Estuarios, Editorial de la Univ Tecnológica Nacional (EdUTecNe), Buenos Aires (Argentina). E-book. ISBN:978-987-1896-16-5

    Google Scholar 

  • Marcovecchio JE, Moreno VJ, Pérez A (1986) Bio-magnification of total mercury in Bahia Blanca shark. Mar Pollut Bull 17(6):276–278. https://doi.org/10.1016/0025-326X(86)90064-0

    Article  CAS  Google Scholar 

  • Marcovecchio JE, Moreno VJ, Pérez A (1988a) The sole, Paralichthys sp. as an indicator species of heavy metal pollution in the Bahía Blanca estuary, Argentina. Sci Total Environ 75(2–3):191–200. https://doi.org/10.1016/0048-9697(88)90032-0

    Article  CAS  Google Scholar 

  • Marcovecchio JE, Moreno VJ, Pérez A (1988b) Determination of some heavy metal baselines in the biota of Bahía Blanca, Argentina. Sci Total Environ 75(2–3):181–190. https://doi.org/10.1016/0048-9697(88)90031-9

    Article  CAS  Google Scholar 

  • Marcovecchio JE, Moreno VJ, Pérez A (1988c) Total mercury contents in marine organisms of the Bahía Blanca estuary trophic web. In: Seeliger U, Lacerda LD, Patchineelam SR (eds) Metals in coastal environments of Latin America. Springer-Verlag, Heidelberg, pp 122–129

    Chapter  Google Scholar 

  • Marcovecchio JE, Andrade JS, Ferrer LD et al (2001) Mercury distribution in estuarine environments from Argentina: the detoxification and recovery of salt-marshes after 15 years. Wetland Ecol Manag 9(4):317–322. https://doi.org/10.1023/A:1011860618461

    Article  CAS  Google Scholar 

  • Marcovecchio JE, Botté SE, Delucchi F et al (2008) Chapter 28: Pollution processes in Bahía Blanca estuarine environment. In: Neves R, Baretta J, Mateus M (eds) Perspectives on Integrated Coastal Zone Management in South America. Part B: From shallow water to the deep fjord: the study sites. IST Scientific Publishers, Lisbon, pp 303–316. ISBN:978-972-8469-74-0

    Google Scholar 

  • Marcovecchio JE, Freije RH, Popovich CA, Botté SE et al (2010a) Long-term observational system for oceanographic studies within Bahía Blanca estuary (Argentina): state of the art and perspectives. AQUASHIFT: Life in Warming Waters, Christian Albrecht’s University, Kiel

    Google Scholar 

  • Marcovecchio JE, Botté SE, Fernández Severini MD et al (2010b) Geochemical control of heavy metals concentrations and distribution within Bahía Blanca estuary (Argentina). Aquat Geochem 16(2):251–266. https://doi.org/10.1007/s10498-009-9076-1

    Article  CAS  Google Scholar 

  • Marcovecchio JE, Botté SE, Domini CE et al (2014) Chapter 15: Heavy metals, major metals, trace elements. In: Nollet L, de Geelder LSP (eds) Handbook of water analysis, 3rd edn. CRC Press, Taylor & Francis Group LCC, Boca Ratón, pp 385–433. 979 pp. ISBN:978-1-4398-8966-4

    Google Scholar 

  • Marcovecchio JE, Botté SE, Fernández Severini MD (2016) Distribution and behavior of zinc in estuarine environments: an overview on Bahía Blanca estuary (Argentina). Environ Earth Sci 75:1168–1184. https://doi.org/10.1007/s12665-016-5942-5

    Article  CAS  Google Scholar 

  • Menzies R, Quinete NS, Gardinali P et al (2013) Baseline occurrence of organochlorine pesticides and other xenobiotics in the marine environment: Caribbean and Pacific collections. Mar Pollut Bull 70:289–295. https://doi.org/10.1016/j.marpolbul.2013.03.003

    Article  CAS  PubMed  Google Scholar 

  • Moss B, Jeppesen E, Søndergaard M et al (2013) Nitrogen, macrophytes, shallow lakes and nutrient limitation: resolution of a current controversy? Hydrobiologia 710:3–21. https://doi.org/10.1007/s10750-012-1033-0

    Article  CAS  Google Scholar 

  • Namieśnik J, Rabajczyk A (2010) The speciation and physicochemical forms of metals in surface waters and sediments. Chem Spec Bioavailab 22(1):1–24. https://doi.org/10.3184/095422910X12632119406391

    Article  CAS  Google Scholar 

  • Nguyen KDT, Morley SA, Lai C-H et al (2011) Upper temperature limits of tropical marine ectotherms: global warming implications. PLoS One 6(12):e29340. https://doi.org/10.1371/journal.pone.0029340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen DH, Umeyama M, ShintaniT (2012) Importance of geometric characteristics for salinity distribution in convergent estuaries. J Hydrol 448–449:1–13. https://doi.org/10.1016/j.jhydrol.2011.10.044

    Article  CAS  Google Scholar 

  • Nixon SW, Oczkowski AJ, Pilson MEQ et al (2015) On the response of pH to inorganic nutrient enrichment in well-mixed coastal marine waters. Estuar Coast 38:232–241. https://doi.org/10.1007/s12237-014-9805-6

    Article  CAS  Google Scholar 

  • Nunes Vaz RA (2012) The salinity response of an inverse estuary to climate change and desalination. Estuar Coast Mar Sci 98:49–59. https://doi.org/10.1016/j.ecss.2011.11.023

    Article  CAS  Google Scholar 

  • Nunes Vaz RA, Lennon GW, Bowers DG (1990) Physical behaviour of a large, negative or inverse estuary. Cont Shelf Res 10(3):277–304. https://doi.org/10.1016/0278-4343(90)90023-F

    Article  Google Scholar 

  • Odum EP (2014) The strategy of ecosystem development. In: Ndubisi FO (ed) The ecological design and planning reader. Island Press, Washington, DC, pp 203–216. 625 pp. ISBN:978-1-61091-489-5

    Chapter  Google Scholar 

  • Olguín HF, Alder VA (2011) Species composition and biogeography of diatoms in Antarctic and Subantarctic (Argentine shelf) waters (37–76°S). Deep-Sea Res II 58:139–152. https://doi.org/10.1016/j.dsr2.2010.09.031

    Article  Google Scholar 

  • Oliva AL, Quintas PY, La Colla NS et al (2015) Distribution, sources, and potential ecotoxicological risk of polycyclic aromatic hydrocarbons in surface sediments from Bahía Blanca Estuary, Argentina. Arch Environ Contam Tox 69(2):163–172. https://doi.org/10.1007/s00244-015-0169-0

    Article  CAS  Google Scholar 

  • Orazi MM, Arias AH, Oliva AL et al (2020) Characterization of atmospheric and soil polycyclic aromatic hydrocarbons and evaluation of air-soil relationship in the Southwest of Buenos Aires province (Argentina). Chemosphere 240:124847. https://doi.org/10.1016/j.chemosphere.2019.124847

    Article  CAS  PubMed  Google Scholar 

  • Paparazzo FE, Williams GN, Pisoni JP et al (2017) Linking phytoplankton nitrogen uptake, macronutrients and chlorophyll-a in SW Atlantic waters: the case of the Gulf of San Jorge, Argentina. J Mar Syst 172:43–50. https://doi.org/10.1016/j.jmarsys.2017.02.007

    Article  Google Scholar 

  • Perillo GME, Piccolo MC, Parodi E et al (2001) Chapter 14: The Bahía Blanca Estuary, Argentina. In: Seeliger U, Kjerfve B (eds) Coastal Marine Ecosystems of Latin America, Ecological studies, vol 144. Springer, Heidelberg, pp 205–217. https://doi.org/10.1007/978-3-662-04482-7_15

    Chapter  Google Scholar 

  • Perillo GME, Pierini JO, Pérez DE, Piccolo MC (2005) Suspended sediment fluxes in the middle reach of the Bahia Blanca Estuary, Argentina. In: DM FG, Knight J (eds) High resolution morphodynamics and sedimentary evolution of estuaries. Springer, Heidelberg, pp 101–114. ISBN:13:978-1-4020-3296-7

    Chapter  Google Scholar 

  • Piccolo MC (2008) Chapter 23: Climatological features of the Bahía Blanca Estuary. In: Neves R, Baretta J, Mateus M (eds) Perspectives on integrated coastal zone management in South America. IST Scientific Publishers, Lisbon, pp 233–242. ISBN:978-972-8469-74-0

    Google Scholar 

  • Piccolo MC, Perillo GME (1999) The Argentina estuaries: a review. In: GME P, Piccolo MC, Pino-Quivira M (eds) Estuaries of South America: their geomorphology and dynamics, vol 235. Springer, Heidelberg, pp 101–132. ISBN:13 978-3-642-64269-2

    Chapter  Google Scholar 

  • Piccolo MC, Perillo GME, Melo WD (2008) Chapter 22: The Bahía Blanca estuary: an integrated overview of its geomorphology and dynamics. In: Neves R, Baretta J, Mateus M (eds) Perspectives on integrated coastal zone management in South America. IST Scientific Publishers, Lisbon, pp 221–232. ISBN:978-972-8469-74-0

    Google Scholar 

  • Popovich CA, Gayoso AM (1999) Effect of irradiance and temperature on the growth rate of Thalassiosira curviseriata Takano (Bacillariophyceae), a diatom bloom in Bahía Blanca estuary (Argentina). J Plankton Res 21(6):1101–1110. https://doi.org/10.1093/plankt/21.6.1101

    Article  Google Scholar 

  • Popovich CA, Marcovecchio JE (2008) Spatial variability of phytoplankton and environmental factors in a temperate estuary of South América (Atlantic Coast, Argentina). Cont Shelf Res 28:236–244. https://doi.org/10.1016/j.csr.2007.08.001

    Article  Google Scholar 

  • Popovich CA, Spetter CV, Marcovecchio JE et al (2008) Dissolved nutrients availability during winter diatom bloom in a turbid and shallow estuary (Bahía Blanca, Argentina). J Coast Res 24(1):95–102. https://doi.org/10.2112/06-0656.1

    Article  CAS  Google Scholar 

  • Ralston DK, Keafer BA, Brosnahan ML et al (2014) Temperature dependence of an estuarine harmful algal bloom: resolving interannual variability in bloom dynamics using a degree-day approach. Limnol Oceanogr 59(4):1112–1126. https://doi.org/10.4319/lo.2014.59.4.1112

    Article  PubMed  PubMed Central  Google Scholar 

  • Renella A, Quirós R (2000) Relevamiento del uso de pesticidas agrícolas en la alta cuenca del río Salado (Provincia de Buenos Aires). Proyecto UBA-Municipio de Junín (CS 2826/99). Área de Sistemas de Producción Acuática, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, 106 pp

    Google Scholar 

  • Rivas AL, Dogliotti AI, Gagliardini DA (2006) Seasonal variability in satellite-measured surface chlorophyll in the Patagonian Shelf. Cont Shelf Res 26:703–720. https://doi.org/10.1016/j.csr.2006.01.013

    Article  Google Scholar 

  • Roach AC (2005) Assessment of metals in sediments from Lake Macquarie, New South Wales, Australia, using normalisation models and sediment quality guidelines. Mar Environ Res 59:453–472. https://doi.org/10.1016/j.marenvres.2004.07.002

    Article  CAS  PubMed  Google Scholar 

  • Roche H, Vollaire Y, Persic A et al (2009) Organochlorines in the Vaccare’s lagoon trophic web (Biosphere Reserve of Camargue, France). Environ Pollut 157:2493–2506. https://doi.org/10.1016/j.envpol.2009.03.016

    Article  CAS  PubMed  Google Scholar 

  • Rochman CM (2015) Part II, Chapter 5: The complex mixture, fate and toxicity of chemicals associated with plastic debris in the marine environment. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Heidelberg, pp 117–140. 456 pp. ISBN:978-3-319-16509-7

    Chapter  Google Scholar 

  • Romero SI, Piola AR, Charo M et al (2006) Chlorophyll-a variability off Patagonia based on SeaWiFS data. J Geophys Res 111:C05021. https://doi.org/10.1029/2005JC003244

    Article  Google Scholar 

  • Ronda AC, Arias AH, Oliva AL et al (2019) Synthetic microfibers in marine sediments and surface seawater from the Argentinean continental shelf and a marine protected area. Mar Pollut Bull 149:110618. https://doi.org/10.1016/j.marpolbul.2019.110618

    Article  CAS  Google Scholar 

  • Roy S, Llewellyn C, Skarstad Egeland E et al (eds) (2011) Phytoplankton pigments: characterization, chemotaxonomy and applications in oceanography. Cambridge University Press, Cambridge. 892 pp. ISBN:978-1-107-00066-7

    Google Scholar 

  • Sericano J, Pucci AE (1984) Chlorinated hydrocarbons in the seawater and surface sediments of Blanca Bay, Argentina. Estuar Coast Shelf Sci 19(1):27–51. https://doi.org/10.1016/0272-7714(84)90051-9

    Article  CAS  Google Scholar 

  • Sheaves M, Baker R, Nagelkerken I et al (2015) True value of estuarine and coastal nurseries for fish: incorporating complexity and dynamics. Estuar Coast 38:401–414. https://doi.org/10.1007/s12237-014-9846-x

    Article  Google Scholar 

  • Simonetti P, Botté SE, Marcovecchio JE (2017) Occurrence and spatial distribution of metals in intertidal sediments of a temperate estuarine system (Bahía Blanca, Argentina). Environ Earth Sci 76:636–647. https://doi.org/10.1007/s12665-017-6975-0

    Article  CAS  Google Scholar 

  • Sindermann CJ (ed) (2006) Coastal pollution – effects on living resources and humans. CRC Press, Taylor & Francis Group LCC, Boca Ratón. 309 pp. ISBN:10:0-8493-9677-8

    Google Scholar 

  • Sokal RR, Rohlf FJ (eds) (1995) Biometry: the principles and practice of statistics in biological research. WH Freeman & Co, New York. 487 pp. ISBN:13:978-0716724117

    Google Scholar 

  • Sunda WG, Cai W-J (2012) Eutrophication induced CO2-acidification of subsurface coastal waters: interactive effects of temperature, salinity, and atmospheric pCO2. Environ Sci Technol 46:10651–10659. https://doi.org/10.1021/es300626f

    Article  CAS  PubMed  Google Scholar 

  • Sznaiberg L (2012) Parques Industriales: Luz verde para producir futuro. Revista Informe Industrial N° 233. http://www.informeindustrial.com.ar/

  • Telesh IV, Khlebovich VV (2010) Principal processes within the estuarine salinity gradient: a review. Mar Pollut Bull 61:149–155. https://doi.org/10.1016/j.ecss.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  • Telesh IV, Schubert H, Skarlato S (2013) Life in the salinity gradient: discovering mechanisms behind a new biodiversity pattern. Estuar Coast Mar Sci 135:317–327. https://doi.org/10.1016/j.ecss.2013.10.013

    Article  Google Scholar 

  • Tombesi N, Pozo K, Arias A et al (2018) Records of organochlorine pesticides in soils and sediments on the southwest of Buenos Aires Province, Argentina. Environ Earth Sci 77(11):403–414. https://doi.org/10.1007/s12665-018-7582-4

    Article  CAS  Google Scholar 

  • UNEP (2001) GEO América Latina y el Caribe. Perspectivas del medio ambiente. PNUMA, San José (Costa Rica), 144 pp

    Google Scholar 

  • UNEP (United Nations Environment Programme) (2002) Regionally based assessment of persistent toxic substances – Eastern and Western South America. UNEP Regional Report. http://www.chem.unep.ch/pts

  • Villafañe VE, Valiñas MS, Cabrerizo MJ et al (2015) Physio-ecological responses of Patagonian coastal marine phytoplankton in a scenario of global change: role of acidification, nutrients and solar UVR. Mar Chem 177:411–420. https://doi.org/10.1016/j.marchem.2015.02.01

    Article  Google Scholar 

  • Wania F, Breivik K, Persson NJ et al (2006) CoZMo-POP 2 – a fugacity-based dynamic multi-compartmental mass balance model of the fate of persistent organic pollutants. Environ Model Softw 21:868–884. https://doi.org/10.1016/j.envsoft.2005.04.003

  • Watts MJ, Mitra S, Marriott AL et al (2017) Source, distribution and ecotoxicological assessment of multielements in superficial sediments of a tropical turbid estuarine environment: a multivariate approach. Mar Pollut Bull 115(1–2):130–140. https://doi.org/10.1016/j.marpolbul.2016.11.057

    Article  CAS  PubMed  Google Scholar 

  • Wetz MS, Yoskowitz DW (2013) An “extreme” future for estuaries? Effects of extreme climatic events on estuarine water quality and ecology. Mar Pollut Bull 69:7–18. https://doi.org/10.1016/j.marpolbul.2013.01.020

    Article  CAS  PubMed  Google Scholar 

  • Whitfield AK, Elliott M, Basset A et al (2012) Paradigms in estuarine ecology: a review of the Remane diagram with a suggested revised model for estuaries. Estuar Coast Shelf Sci 97:78–90. https://doi.org/10.1016/j.ecss.2011.11.026

    Article  Google Scholar 

  • Xu S, Chen Z, Li S et al (2011) Modeling trophic structure and energy flows in a coastal artificial ecosystem using mass-balance Ecopath model. Estuar Coast 34:351–363. https://doi.org/10.1007/s12237-010-9323-0

    Article  CAS  Google Scholar 

  • Yakushev EV, Newton A (2013) Chapter 1: Introduction: redox interfaces in marine waters. In: Yakushev EV (ed) Chemical structure of pelagic redox interfaces: observation and modelling. Springer, Heidelberg, pp 1–12. 292 pp. ISBN:978-3-642-32124-5

    Chapter  Google Scholar 

  • Yang Y-P, Li Y, Sun Z-H et al (2014) Suspended sediment load in the turbidity maximum zone at the Yangtze River Estuary: the trends and causes. J Geogr Sci 24(1):129–142. https://doi.org/10.1007/s11442-014-1077-3

    Article  Google Scholar 

  • Yosim AE, Fry RC (2015) Chapter 1: Systems biology in toxicology and environmental health. In: Fry RC (ed) Systems biology in toxicology and environmental health. Elsevier Sci. Publ, Amsterdam, pp 1–10. 273 pp. ISBN:978-0-12-801564-3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge E. Marcovecchio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marcovecchio, J.E. et al. (2021). Bahía Blanca Estuary: A Chemical Oceanographic Approach. In: Fiori, S.M., Pratolongo, P.D. (eds) The Bahía Blanca Estuary. Springer, Cham. https://doi.org/10.1007/978-3-030-66486-2_4

Download citation

Publish with us

Policies and ethics