Skip to main content

Phthalates and Neurological Disorders: From Exposure to Preventive Interventions

  • 220 Accesses

Part of the Emerging Contaminants and Associated Treatment Technologies book series (ECAT)

Abstract

Phthalates are organic compounds that are used in cosmetics, food packaging industry, toys and paints, and, most commonly, as plasticizers. Phthalates are classified as low and high categories according to their molecular weight. Human health issues, especially neurodevelopmental problems, are significant consequences of exposure to phthalates. Both low- and high-molecular weight phthalates like MBP (monobutyl phthalate) and DEHP (di-ethylhexyl phthalate) metabolites are associated with different cognitive and behavioral issues. It may cause severe asthma, affect motor neurons and cause many neurological disorders. Prenatal phthalate exposure is related to behavioral problems in children. In this chapter, we have discussed the pharmacokinetics of phthalates in association with neurodevelopment disorder in humans. Due to its potentially harmful nature, this ubiquitous environmental contaminant has gained considerable attention. The most common plasticizer used globally was phthalate acid esters (PAE), also known as phthalate. Later on, many organizations have imposed restrictions on phthalate use in children’s toys or products. However, products used by adults still contain phthalates, such as low-molecular weight phthalates, whereas DEP, DnBP and DiBP phthalates are used in medications, solvents and cosmetics.

Keywords

  • Phthalate exposure
  • Neuro problems
  • Plasticizers
  • Autism

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-66376-6_13
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-66376-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 13.1
Fig. 13.2
Fig. 13.3
Fig. 13.4

References

  1. Peng L. Mice brain tissue injury induced by Diisononyl phthalate exposure and the protective application of vitamin E. J Biochem Mol Toxicol. 2015;29:311–20. https://doi.org/10.1002/jbt.21700.

    CAS  CrossRef  Google Scholar 

  2. Dikmen BY, Alpay M, Kismali G, Filazı A, Kuzukiran Ö, Sireli UT. In vitro effects of phthalate mixtures on colorectal adenocarcinoma cell lines. J Environ Pathol Toxicol Oncol. 2015;34:115–23. https://doi.org/10.1615/jenvironpatholtoxicoloncol.2015013256.

    CrossRef  Google Scholar 

  3. Stelmach I, Majak P, Jerzynska J, Podlecka D, Stelmach W, Polańska K, et al. The effect of prenatal exposure to phthalates on food allergy and early eczema in inner-city children. Allergy Asthma Proc. 2015;36:e72–8. https://doi.org/10.2500/aap.2015.36.3867.

    CrossRef  Google Scholar 

  4. Johns LE, Cooper GS, Galizia A, Meeker JD. Exposure assessment issues in epidemiology studies of phthalates. Environ Int. 2015;85:27–39. https://doi.org/10.1016/j.envint.2015.08.005.

    CAS  CrossRef  Google Scholar 

  5. Kuliński W. Severe nervous system damage in long-term professional exposure to phthalates. J Clin Toxicol. 2017;7(2):1–4. https://doi.org/10.4172/2161-0495.1000342.

    CrossRef  Google Scholar 

  6. Braun JM. Early-life exposure to EDCs: role in childhood obesity and neurodevelopment. Nat Rev Endocrinol. 2017;13:161–73. https://doi.org/10.1038/nrendo.2016.186.

    CAS  CrossRef  Google Scholar 

  7. Benjamin S, Masai E, Kamimura N, Takahashi K, Anderson RC, Faisal PA. Phthalates impact human health: epidemiological evidences and plausible mechanism of action. J Hazard Mater. 2017;340:360–83. https://doi.org/10.1016/j.jhazmat.2017.06.036.

    CAS  CrossRef  Google Scholar 

  8. Hsu JY, Ho HH, Liao PC. The potential use of diisononyl phthalate metabolites hair as biomarkers to assess long-term exposure demonstrated by a rat model. Chemosphere. 2015;118:219–28. https://doi.org/10.1016/j.chemosphere.2014.09.025.

    CAS  CrossRef  Google Scholar 

  9. Bornehag CG, Carlstedt F, Jönsson BA, Lindh CH, Jensen TK, Bodin A, et al. Prenatal phthalate exposures and anogenital distance in swedish boys. Environ Health Perspect. 2015;123:101–7. https://doi.org/10.1289/ehp.1408163.

    CrossRef  Google Scholar 

  10. Axelsson J, Rylander L, Rignell-Hydbom A, Lindh CH, Jönsson BAG, Giwercman A. Prenatal phthalate exposure and reproductive function in young men. Environ Res. 2015;138:264–70. https://doi.org/10.1016/j.envres.2015.02.024.

    CAS  CrossRef  Google Scholar 

  11. Chen L, Chen J, Xie CM, Zhao Y, Wang X, Zhang YH. Maternal Disononyl phthalate exposure activates allergic airway inflammation via stimulating the phosphoinositide 3-kinase/Akt pathway in rat pups. Biomed Environ Sci. 2015;28:190–8. https://doi.org/10.3967/bes2015.025.

    CAS  CrossRef  Google Scholar 

  12. TSCA. Section 21|assessing and managing chemicals under TSCA|US EPA. https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/tsca-section-21. Accessed 23 Aug 2020.

  13. Commission Regulation (EU) No 143/2011 of 17 February 2011 amending Annex XIV to Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)Text with EEA relevance 2011.

    Google Scholar 

  14. National Research Council (US) Committee on the Health Risks of Phthalates. Phthalates and Cumulative Risk Assessment: The Tasks Ahead. Washington (DC): National Academies Press (US); 2008:2, Phthalate Exposure Assessment in Humans. Available from: https://www.ncbi.nlm.nih.gov/books/NBK215044/.

    Google Scholar 

  15. Hauser R, Calafat AM, Hauser AR. Phthalates and human health. Environ Med. 2005;62:806. https://doi.org/10.1136/oem.2004.017590.

    CAS  CrossRef  Google Scholar 

  16. Howdeshell KL, Hotchkiss AK, Gray LE. Cumulative effects of antiandrogenic chemical mixtures and their relevance to human health risk assessment. Int J Hyg Environ Health. 2017;220:179–88. https://doi.org/10.1016/j.ijheh.2016.11.007.

    CAS  CrossRef  Google Scholar 

  17. Lioy P, Hauser R, Gennings C. Koch HM, Mirkes PE, Schwetz BA, et al. Assessment of phthalates/phthalate alternatives in children’s toys and childcare articles: Review of the report including conclusions and recommendation of the Chronic Hazard Advisory Panel of the Consumer Product Safety Commission. J Expo Sci Environ Epidemiol. 2015;25:343–353. https://doi.org/10.1038/jes.2015.33.

    Google Scholar 

  18. Shea KM. Pediatric exposure and potential toxicity of phthalate plasticizers. Pediatrics. 2003;111:1467–74. https://doi.org/10.1542/peds.111.6.1467.

    CrossRef  Google Scholar 

  19. Huang LP, Lee CC, Hsu PC, Shih TS. The association between semen quality in workers and the concentration of di(2-ethylhexyl) phthalate in polyvinyl chloride pellet plant air. Fertil Steril. 2011;96:90–4. https://doi.org/10.1016/j.fertnstert.2011.04.093.

    CAS  CrossRef  Google Scholar 

  20. Colacino JA, Harris TR, Schecter A. Dietary intake is associated with phthalate body burden in a nationally representative sample. Environ Health Perspect. 2010;118:998–1003. https://doi.org/10.1289/ehp.0901712.

    CAS  CrossRef  Google Scholar 

  21. Schettler T, Skakkebæk NE, De Kretser D, Leffers H. Human exposure to phthalates via consumer products. Int J Androl. 2006;29:134–9. https://doi.org/10.1111/j.1365-2605.2005.00567.x.

    CAS  CrossRef  Google Scholar 

  22. 10 Toxic Beauty Ingredients to Avoid|HuffPost Life. n.d. https://www.huffpost.com/entry/dangerous-beauty-products_b_4168587. Accessed 23 Aug 2020.

  23. Koniecki D, Wang R, Moody RP, Zhu J. Phthalates in cosmetic and personal care products: concentrations and possible dermal exposure. Environ Res. 2011;111:329–36. https://doi.org/10.1016/j.envres.2011.01.013.

    CAS  CrossRef  Google Scholar 

  24. North EJ, Halden RU. Plastics and environmental health: the road ahead. Rev Environ Health. 2013;28:1–8. https://doi.org/10.1515/reveh-2012-0030.

    CAS  CrossRef  Google Scholar 

  25. Meeker JD, Sathyanarayana S, Swan SH. Phthalates and other additives in plastics: human exposure and associated health outcomes. Philos Trans R Soc B Biol Sci. 2009;364:2097–113. https://doi.org/10.1098/rstb.2008.0268.

    CAS  CrossRef  Google Scholar 

  26. Ramesh Kumar A, Sivaperumal P. Analytical methods for the determination of biomarkers of exposure to phthalates in human urine samples. Trends Anal Chem. 2016;75:151–61. https://doi.org/10.1016/j.trac.2015.06.008.

    CAS  CrossRef  Google Scholar 

  27. Phthalates and cumulative risk assessment. National Academies Press; 2008. https://doi.org/10.17226/12528.

  28. Ying G, Zifeng Z, Liyan L, Yifan L, Nanqi R, Kurunthachalam K. Occurrence and Profiles of Phthalates in Foodstuffs from China and Their Implications for Human Exposure.J Agri Food Chem. 2012;60(27): 6913–6919. https://doi.org/10.1021/jf3021128.

  29. Ashworth MJ, Chappell A, Ashmore E, Fowles J. Analysis and assessment of exposure to selected phthalates found in children’s toys in Christchurch, New Zealand. Int J Environ Res Public Health. 2018;15:200. https://doi.org/10.3390/ijerph15020200.

    CAS  CrossRef  Google Scholar 

  30. Becker K, Seiwert M, Angerer J, Heger W, Koch HM, Nagorka R, et al. DEHP metabolites in urine of children and DEHP in house dust. Int J Hyg Environ Health. 2004;207:409–17. https://doi.org/10.1078/1438-4639-00309.

    CAS  CrossRef  Google Scholar 

  31. Luo H, Sun G, Shi Y, Shen Y, Xu K. Evaluation of the Di(2-ethylhexyl) phthalate released from polyvinyl chloride medical devices that contact blood. SpringerPlus. 2014;3:58. https://doi.org/10.1186/2193-1801-3-58.

    Google Scholar 

  32. Main KM, Mortensen GK, Kaleva MM, Boisen KA, Damgaard IN, Chellakooty M, et al. Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect. 2006;114:270–6. https://doi.org/10.1289/ehp.8075.

    CAS  CrossRef  Google Scholar 

  33. Sioen I, Fierens T, Van Holderbeke M, Geerts L, Bellemans M, De Maeyer M, et al. Phthalates dietary exposure and food sources for Belgian preschool children and adults. Environ Int. 2012;48:102–8. https://doi.org/10.1016/j.envint.2012.07.004.

    CAS  CrossRef  Google Scholar 

  34. Sathyanarayana S, Alcedo G, Saelens BE, Zhou C, Dills RL, Yu J, et al. Unexpected results in a randomized dietary trial to reduce phthalate and bisphenol a exposures. J Expo Sci Environ Epidemiol. 2013;23:378–84. https://doi.org/10.1038/jes.2013.9.

    CAS  CrossRef  Google Scholar 

  35. Darbre PD, Harvey PW. Paraben esters: review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks. J Appl Toxicol. 2008;28:561–78. https://doi.org/10.1002/jat.1358.

    CAS  CrossRef  Google Scholar 

  36. Halden RU. Plastics and health risks. Annu Rev Public Health. 2010;31:179–94. https://doi.org/10.1146/annurev.publhealth.012809.103714.

    CrossRef  Google Scholar 

  37. Stahlhut RW, van Wijngaarden E, Dye TD, Cook S, Swan SH. Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males. Environ Health Perspect. 2007;115:876–82. https://doi.org/10.1289/ehp.9882.

    CAS  CrossRef  Google Scholar 

  38. Colon I, Caro D, Bourdony CJ, Rosario O. Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development—Sciencebase-catalog. n.d. https://www.sciencebase.gov/catalog/item/5057706ae4b01ad7e027b5a2. Accessed 23 Aug 2020.

  39. Wang Y, Zhu H, Kannan K. A review of biomonitoring of phthalate exposures. Toxics. 2019;7:21. https://doi.org/10.3390/TOXICS7020021.

    CrossRef  Google Scholar 

  40. Wittassek M, Angerer J. Phthalates: metabolism and exposure. Int J Androl. 2008;31:131–8. https://doi.org/10.1111/j.1365-2605.2007.00837.x.

    CAS  CrossRef  Google Scholar 

  41. Koch HM, Rossbach B, Drexler H, Angerer J. Internal exposure of the general population to DEHP and other phthalates—determination of secondary and primary phthalate monoester metabolites in urine. Environ Res. 2003;93:177–85. https://doi.org/10.1016/S0013-9351(03)00083-5.

    CAS  CrossRef  Google Scholar 

  42. Silva MJ, Samandar E, Preau JL, Needham LL, Calafat AM. Urinary oxidative metabolites of di(2-ethylhexyl) phthalate in humans. Toxicology. 2006;219:22–32. https://doi.org/10.1016/j.tox.2005.10.018.

    CAS  CrossRef  Google Scholar 

  43. Dirven HAAM, van den Broek PHH, Arends AMM, Nordkamp HH, de Lepper AJGM, Henderson PT, et al. Metabolites of the plasticizer di (2-ethylhexyl) phthalate in urine samples of workers in polyvinylchloride processing industries. Int Arch Occup Environ Health. 1993;64:549–54. https://doi.org/10.1007/BF00517699.

    CAS  CrossRef  Google Scholar 

  44. Blount BC, Milgram KE, Silva MJ, Malek NA, Reidy JA, Needham LL, et al. Quantitative detection of eight phthalate metabolites in human urine using HPLC-APCI-MS/MS. Anal Chem. 2000;72:4127–34. https://doi.org/10.1021/ac000422r.

    CAS  CrossRef  Google Scholar 

  45. Alzaga R, Peña A, Bayona JM. Determination of phthalic monoesters in aqueous and urine samples by solid-phase microextraction-diazomethane on-fibre derivatization-gas chromatography-mass spectrometry. J Sep Sci. 2003;26:87–96. https://doi.org/10.1002/jssc.200390020.

    CAS  CrossRef  Google Scholar 

  46. Frederiksen H, Skakkebæk NE, Andersson AM. Metabolism of phthalates in humans. Mol Nutr Food Res. 2007;51:899–911. https://doi.org/10.1002/mnfr.200600243.

    CAS  CrossRef  Google Scholar 

  47. Kavlock R, Boekelheide K, Chapin R, Cunningham M, Faustman E, Foster P, et al. NTP center for the evaluation of risks to human reproduction: Phthalates expert panel report on the reproductive and developmental toxicity of di(2-ethylhexyl) phthalate. Reprod Toxicol. 2002;16:529–653. https://doi.org/10.1016/S0890-6238(02)00032-1.

    CAS  CrossRef  Google Scholar 

  48. Swan SH. Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environ Res. 2008;108:177–84. https://doi.org/10.1016/j.envres.2008.08.007.

    CAS  CrossRef  Google Scholar 

  49. Kamrin MA. Phthalate risks, phthalate regulation, and public health: a review. J Toxicol Environ Heal Pt B Crit Rev. 2009;12:157–74. https://doi.org/10.1080/10937400902729226.

    CAS  CrossRef  Google Scholar 

  50. Koch HM, Calafat AM. Human body burdens of chemicals used in plastic manufacture. Philos Trans R Soc B Biol Sci. 2009;364:2063–78. https://doi.org/10.1098/rstb.2008.0208.

    CAS  CrossRef  Google Scholar 

  51. SCHETTLER T. Human exposure to phthalates via consumer products. Int J Androl. 2006;29:134–9. https://doi.org/10.1111/j.1365-2605.2005.00567.x.

    CAS  CrossRef  Google Scholar 

  52. Kluwe WM. Overview of phthalate Ester pharmacokinetics in mammalian species, vol. 45; 1982.

    Google Scholar 

  53. Genuis SJ, Beesoon S, Lobo RA, Birkholz D. Human elimination of phthalate compounds: blood, urine, and sweat (BUS) study. Sci World J. 2012;2012:615068. https://doi.org/10.1100/2012/615068.

    CAS  CrossRef  Google Scholar 

  54. Borch JLOHUVA. Steroidogenesis in fetal male rats is reduced by DEHP and DINP, but endocrine effects of DEHP are not modulated by DEHA in fetal, prepubertal and adult male rats. Reprod Toxicol. 2004;18:53–61.

    CAS  CrossRef  Google Scholar 

  55. Schwedler G, Rucic E, Lange R, Conrad A, Koch HM, Pälmke C, et al. Phthalate metabolites in urine of children and adolescents in Germany. Human biomonitoring results of the German environmental survey GerES V, 2014–2017. Int J Hyg Environ Health. 2020;225:113444. https://doi.org/10.1016/j.ijheh.2019.113444.

    CAS  CrossRef  Google Scholar 

  56. Ito Y, Kamijima M, Nakajima T. Di(2-ethylhexyl) phthalate-induced toxicity and peroxisome proliferator-activated receptor alpha: a review. Environ Health Prev Med. 2019;24:47. https://doi.org/10.1186/s12199-019-0802-z.

    CAS  CrossRef  Google Scholar 

  57. Foster PMD, Gray E, Leffers H, Skakkebæk NE. Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. Int J Androl. 2006;29:140–7. https://doi.org/10.1111/j.1365-2605.2005.00563.x.

    CAS  CrossRef  Google Scholar 

  58. Vrijheid M, Armstrong B, Dolk H, Van Tongeren M, Botting B. Risk of hypospadias in relation to maternal occupational exposure to potential endocrine disrupting chemicals. Occup Environ Med. 2003;60:543–50. https://doi.org/10.1136/oem.60.8.543.

    CAS  CrossRef  Google Scholar 

  59. Radke EG, Braun JM, Nachman RM, Cooper GS. Phthalate exposure and neurodevelopment: a systematic review and meta-analysis of human epidemiological evidence. Environ Int. 2020;137:105408. https://doi.org/10.1016/j.envint.2019.105408.

    CAS  CrossRef  Google Scholar 

  60. Lin S, Ku H-Y, Su P-H, Chen J-W, Huang P-C, Angerer J, et al. Phthalate exposure in pregnant women and their children in Central Taiwan. Chemosphere. 2011;82:947–55. https://doi.org/10.1016/j.chemosphere.2010.10.073.

    CAS  CrossRef  Google Scholar 

  61. Al-Saleh I, Elkhatib R, Al-Rajoudi T, Al-Qudaihi G. Assessing the concentration of phthalate esters (PAEs) and bisphenol a (BPA) and the genotoxic potential of treated wastewater (final effluent) in Saudi Arabia. Sci Total Environ. 2017;578:440–51. https://doi.org/10.1016/j.scitotenv.2016.10.207.

    CAS  CrossRef  Google Scholar 

  62. Smith CA, MacDonald A, Holahan MR. Acute postnatal exposure to di(2-ethylhexyl) phthalate adversely impacts hippocampal development in the male rat. Neuroscience. 2011;193:100–8. https://doi.org/10.1016/j.neuroscience.2011.06.082.

    CAS  CrossRef  Google Scholar 

  63. Burnett RT, Arden Pope C, Ezzati M, Olives C, Lim SS, Mehta S, et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect. 2014;122:397–403. https://doi.org/10.1289/ehp.1307049.

    CrossRef  Google Scholar 

  64. Nadel L, Moscovitch M. The hippocampal complex and long-term memory revisited. Trends Cogn Sci. 2001;5:228–30. https://doi.org/10.1016/S1364-6613(00)01664-8.

    CAS  CrossRef  Google Scholar 

  65. Holahan MR, Smith CA. Phthalates and neurotoxic effects on hippocampal network plasticity. Neurotoxicology. 2015;48:21–34. https://doi.org/10.1016/j.neuro.2015.02.008.

    CAS  CrossRef  Google Scholar 

  66. Bayer SA. Development of the hippocampal region in the rat I. neurogenesis examined with 3H-thymidine autoradiography. J Comp Neurol. 1980;190:87–114. https://doi.org/10.1002/cne.901900107.

    CAS  CrossRef  Google Scholar 

  67. Andrade AJM, Grande SW, Talsness CE, Grote K, Chahoud I. A dose-response study following in utero and lactational exposure to di-(2-ethylhexyl)-phthalate (DEHP): non-monotonic dose-response and low dose effects on rat brain aromatase activity. Toxicology. 2006;227:185–92. https://doi.org/10.1016/j.tox.2006.07.022.

    CAS  CrossRef  Google Scholar 

  68. Le Cann P, Bonvallot N, Glorennec P, Deguen S, Goeury C, Le Bot B. Indoor environment and children’s health: recent developments in chemical, biological, physical and social aspects. Int J Hyg Environ Health. 2011;215:1–18. https://doi.org/10.1016/j.ijheh.2011.07.008.

    CrossRef  Google Scholar 

  69. Zeliger HI. Exposure to lipophilic chemicals as a cause of neurological impairments, neurodevelopmental disorders and neurodegenerative diseases. Interdiscip Toxicol. 2013;6:103–10. https://doi.org/10.2478/intox-2013-0018.

    CAS  CrossRef  Google Scholar 

  70. Jurewicz J, Polańska K, Hanke W. Chemical exposure early in life and the neurodevelopment of children—an overview of current epidemiological evidence. Ann Agric Environ Med. 2013;20:465–86.

    Google Scholar 

  71. Yolton K, Xu Y, Strauss D, Altaye M, Calafat AM, Khoury J. Prenatal exposure to bisphenol a and phthalates and infant neurobehavior. Neurotoxicol Teratol. 2011;33:558–66. https://doi.org/10.1016/j.ntt.2011.08.003.

    CAS  CrossRef  Google Scholar 

  72. Bylicky MA, Mueller GP, Day RM. Mechanisms of endogenous neuroprotective effects of astrocytes in brain injury. Oxid Med Cell Longev. 2018;2018:1. https://doi.org/10.1155/2018/6501031.

    CAS  CrossRef  Google Scholar 

  73. Xiao AY, Wang XQ, Yang A, Yu SP. Slight impairment of Na+, K+-ATPase synergistically aggravates ceramide- and β-amyloid-induced apoptosis in cortical neurons. Brain Res. 2002;955:253–9. https://doi.org/10.1016/S0006-8993(02)03472-8.

    CAS  CrossRef  Google Scholar 

  74. Tully K, Kupfer D, Dopico AM, Treistman SN. A plasticizer released from IV drip chambers elevates calcium levels in neurosecretory terminals. Toxicol Appl Pharmacol. 2000;168:183–8. https://doi.org/10.1006/taap.2000.9036.

    CAS  CrossRef  Google Scholar 

  75. Shin HM, Schmidt RJ, Tancredi D, Barkoski J, Ozonoff S, Bennett DH, et al. Prenatal exposure to phthalates and autism spectrum disorder in the MARBLES study 11 medical and health sciences 1117 public health and health services. Environ Heal A Glob Access Sci Source. 2018;17:85. https://doi.org/10.1186/s12940-018-0428-4.

    CAS  CrossRef  Google Scholar 

  76. Whyatt RM, Liu X, Rauh VA, Calafat AM, Just AC, Hoepner L, et al. Maternal prenatal urinary phthalate metabolite concentrations and child mental, psychomotor, and behavioral development at 3 years of age. Environ Health Perspect. 2012;120:290–5. https://doi.org/10.1289/ehp.1103705.

    CAS  CrossRef  Google Scholar 

  77. Miodovnik A, Engel SM, Zhu C, Ye X, Soorya LV, Silva MJ, et al. Endocrine disruptors and childhood social impairment. Neurotoxicology. 2011;32:261–7. https://doi.org/10.1016/j.neuro.2010.12.009.

    CAS  CrossRef  Google Scholar 

  78. Kobrosly RW, Evans S, Miodovnik A, Barrett ES, Thurston SW, Calafat AM, et al. Prenatal phthalate exposures and neurobehavioral development scores in boys and girls at 6–10 years of age. Environ Health Perspect. 2014;122:521–8. https://doi.org/10.1289/ehp.1307063.

    CrossRef  Google Scholar 

  79. Factor-Litvak P, Insel B, Calafat AM, Liu X, Perera F, Rauh VA, et al. Persistent associations between maternal prenatal exposure to Phthalates on child IQ at age 7 years. PLoS One. 2014;9:e114003. https://doi.org/10.1371/journal.pone.0114003.

    CAS  CrossRef  Google Scholar 

  80. Lien Y-J, Ku H-Y, Su P-H, Chen S-J, Chen H-Y, Liao P-C, et al. Prenatal exposure to phthalate esters and behavioral syndromes in children at 8 years of age: Taiwan maternal and infant cohort study. Environ Health Perspect. 2015;123:95–100. https://doi.org/10.1289/ehp.1307154.

    CrossRef  Google Scholar 

  81. Gascon M, Valvi D, Forns J, Casas M, Martínez D, Júlvez J, et al. Prenatal exposure to phthalates and neuropsychological development during childhood. Int J Hyg Environ Health. 2015;218:550–8. https://doi.org/10.1016/j.ijheh.2015.05.006.

    CAS  CrossRef  Google Scholar 

  82. Engel SM, Miodovnik A, Canfield RL, Zhu C, Silva MJ, Calafat AM, et al. Prenatal phthalate exposure is associated with childhood behavior and executive functioning. Environ Health Perspect. 2010;118:565–71. https://doi.org/10.1289/ehp.0901470.

    CAS  CrossRef  Google Scholar 

  83. Braun JM, Bellinger DC, Hauser R, Wright RO, Chen A, Calafat AM, et al. Prenatal phthalate, triclosan, and bisphenol a exposures and child visual-spatial abilities. Neurotoxicology. 2017;58:75–83. https://doi.org/10.1016/j.neuro.2016.11.009.

    CAS  CrossRef  Google Scholar 

  84. Braun JM, Kalkbrenner AE, Just AC, Yolton K, Calafat AM, Sjödin A, et al. Gestational exposure to endocrine-disrupting chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect. 2014;122:513–20. https://doi.org/10.1289/ehp.1307261.

    CrossRef  Google Scholar 

  85. Braun JM, Sathyanarayana S, Hauser R. Phthalate exposure and children’s health. Curr Opin Pediatr. 2013;25:247–54. https://doi.org/10.1097/MOP.0b013e32835e1eb6.

    CAS  CrossRef  Google Scholar 

  86. Ejaredar M, Nyanza EC, Ten Eycke K, Dewey D. Phthalate exposure and childrens neurodevelopment: a systematic review. Environ Res. 2015;142:51–60. https://doi.org/10.1016/j.envres.2015.06.014.

    CAS  CrossRef  Google Scholar 

  87. Hatch EE, Nelson JW, Qureshi MM, Weinberg J, Moore LL, Singer M, et al. Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999–2002. Environ Heal A Glob Access Sci Source. 2008;7:27. https://doi.org/10.1186/1476-069X-7-27.

    CAS  CrossRef  Google Scholar 

  88. Lind PM, Roos V, Rönn M, Johansson L, Ahlström H, Kullberg J, et al. Serum concentrations of phthalate metabolites are related to abdominal fat distribution two years later in elderly women. Environ Health. 2012;11:21. https://doi.org/10.1186/1476-069X-11-21.

    CAS  CrossRef  Google Scholar 

  89. Boas M, Frederiksen H, Feldt-Rasmussen U, Skakkebæk NE, Hegedüs L, Hilsted L, et al. Childhood exposure to Phthalates: associations with thyroid function, insulin-like growth Factor I, and growth. Environ Health Perspect. 2010;118:1458–64. https://doi.org/10.1289/ehp.0901331.

    CAS  CrossRef  Google Scholar 

  90. Just AC, Whyatt RM, Perzanowski MS, Calafat AM, Perera FP, Goldstein IF, et al. Prenatal exposure to butylbenzyl phthalate and early eczema in an urban cohort. Environ Health Perspect. 2012;120:1475–80. https://doi.org/10.1289/ehp.1104544.

    CAS  CrossRef  Google Scholar 

  91. Kolarik B, Naydenov K, Larsson M, Bornehag CG, Sundell J. The association between phthalates in dust and allergic diseases among Bulgarian children. Environ Health Perspect. 2008;116:98–103. https://doi.org/10.1289/ehp.10498.

    CAS  CrossRef  Google Scholar 

  92. Bornehag CG, Sundell J, Weschler CJ, Sigsgaard T, Lundgren B, Hasselgren M, et al. The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case-control study. Environ Health Perspect. 2008;112:1393–7. https://doi.org/10.1289/ehp.7187.

    CAS  CrossRef  Google Scholar 

  93. Hsu NY, Lee CC, Wang JY, Li YC, Chang HW, Chen CY, et al. Predicted risk of childhood allergy, asthma, and reported symptoms using measured phthalate exposure in dust and urine. Indoor Air. 2012;22:186–99. https://doi.org/10.1111/j.1600-0668.2011.00753.x.

    CAS  CrossRef  Google Scholar 

  94. Benayoun L, Letuve S, Druilhe A, Boczkowski J, Dombret MC, Mechighel P, et al. Regulation of peroxisome proliferator-activated receptor γ expression in human asthmatic airways: relationship with proliferation, apoptosis, and airway remodeling. Am J Respir Crit Care Med. 2001;164:1487–94. https://doi.org/10.1164/ajrccm.164.8.2101070.

    CAS  CrossRef  Google Scholar 

  95. Hurst CH, Waxman DJ. Activation of PPARα and PPARγ by environmental phthalate monoesters. Toxicol Sci. 2003;74:297–308. https://doi.org/10.1093/toxsci/kfg145.

    CAS  CrossRef  Google Scholar 

  96. Cho SC, Bhang SY, Hong YC, Shin MS, Kim BN, Kim JW, et al. Relationship between environmental phthalate exposure and the intelligence of school-age children. Environ Health Perspect. 2010;118:1027–32. https://doi.org/10.1289/ehp.0901376.

    CAS  CrossRef  Google Scholar 

  97. Testa C, Nuti F, Hayek J, de Felice C, Chelli M, Rovero P, et al. Di-(2-ethylhexyl) phthalate and autism spectrum disorders. ASN Neuro. 2012;4:223–9. https://doi.org/10.1042/AN20120015.

    CAS  CrossRef  Google Scholar 

  98. Kim Y, Ha EH, Kim EJ, Park H, Ha M, Kim JH, et al. Prenatal exposure to phthalates and infant development at 6 months: prospective mothers and children’s environmental health (MOCEH) study. Environ Health Perspect. 2011;119:1495–500. https://doi.org/10.1289/ehp.1003178.

    CAS  CrossRef  Google Scholar 

  99. Engel SM, Zhu C, Berkowitz GS, Calafat AM, Silva MJ, Miodovnik A, et al. Prenatal phthalate exposure and performance on the neonatal behavioral assessment scale in a multiethnic birth cohort. Neurotoxicology. 2009;30:522–8. https://doi.org/10.1016/j.neuro.2009.04.001.

    CAS  CrossRef  Google Scholar 

  100. Feigin VL, Krishnamurthi RV, Theadom AM, Abajobir AA, Mishra SR, Ahmed MB, et al. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet Neurol. 2017;16:877–97. https://doi.org/10.1016/S1474-4422(17)30299-5.

    CrossRef  Google Scholar 

  101. Gooch CL, Pracht E, Borenstein AR. The burden of neurological disease in the United States: a summary report and call to action. Ann Neurol. 2017;81:479–84. https://doi.org/10.1002/ana.24897.

    CrossRef  Google Scholar 

  102. McDonald TJW, Cervenka MC. Ketogenic diets for adults with highly refractory epilepsy. Epilepsy Curr. 2017;17:346–50. https://doi.org/10.5698/1535-7597.17.6.346.

    CrossRef  Google Scholar 

  103. Paoli A, Rubini A, Volek JS, Grimaldi KA. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr. 2013;67:789–96. https://doi.org/10.1038/ejcn.2013.116.

    CAS  CrossRef  Google Scholar 

  104. Taylor MK, Sullivan DK, Swerdlow RH, Vidoni ED, Morris JK, Mahnken JD, et al. A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults. Am J Clin Nutr. 2017;106:1463–70. https://doi.org/10.3945/ajcn.117.162263.

    CAS  CrossRef  Google Scholar 

  105. Newport MT, Vanitallie TB, Kashiwaya Y, King MT, Veech RL. A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s disease. Alzheimers Dement. 2015;11:99–103. https://doi.org/10.1016/j.jalz.2014.01.006.

    CrossRef  Google Scholar 

  106. Streijger F, Plunet WT, Lee JHT, Liu J, Lam CK, Park S, et al. Ketogenic diet improves forelimb motor function after spinal cord injury in rodents. PLoS One. 2013;8:e78765. https://doi.org/10.1371/journal.pone.0078765.

    CAS  CrossRef  Google Scholar 

  107. Haas HL, Sergeeva OA, Selbach O. Histamine in the nervous system. Physiol Rev. 2008;88:1183–241. https://doi.org/10.1152/physrev.00043.2007.

    CAS  CrossRef  Google Scholar 

  108. Moreno-Delgado D, Gómez-Ramírez J, Torrent-Moreno A, González-Sepúlveda M, Blanco I, Ortiz J. Different role of cAMP dependent protein kinase and CaMKII in H3 receptor regulation of histamine synthesis and release. Neuroscience. 2009;164:1244–51. https://doi.org/10.1016/j.neuroscience.2009.08.068.

    CAS  CrossRef  Google Scholar 

  109. Kim BN, Cho SC, Kim Y, Shin MS, Yoo HJ, Kim JW, et al. Phthalates exposure and attention-deficit/hyperactivity disorder in school-age children. Biol Psychiatry. 2009;66:958–63. https://doi.org/10.1016/j.biopsych.2009.07.034.

    CAS  CrossRef  Google Scholar 

  110. Swan SH, Liu F, Hines M, Kruse RL, Wang C, Redmon JB, et al. Prenatal phthalate exposure and reduced masculine play in boys. Int J Androl. 2010;33:259–69. https://doi.org/10.1111/j.1365-2605.2009.01019.x.

    CAS  CrossRef  Google Scholar 

  111. Téllez-Rojo MM, Cantoral A, Cantonwine DE, Schnaas L, Peterson K, Hu H, et al. Prenatal urinary phthalate metabolites levels and neurodevelopment in children at two and three years of age. Sci Total Environ. 2013;461–462:386–90. https://doi.org/10.1016/j.scitotenv.2013.05.021.

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Ashraf, A., Kiran, S., Muzammil, S., Hayat, S., Ijaz, M.U., Muzammil, A. (2021). Phthalates and Neurological Disorders: From Exposure to Preventive Interventions. In: Akash, M.S.H., Rehman, K. (eds) Environmental Contaminants and Neurological Disorders. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-66376-6_13

Download citation