Skip to main content

Forest Ecosystem Services for Human Health

  • Chapter
  • First Online:
Agri-food and Forestry Sectors for Sustainable Development

Part of the book series: Sustainable Development Goals Series ((SDGS))

Abstract

This chapter reviews researches showing the great potential of non-timber use of forest products, in particular needles, bark, wood, and cones from conifer species, which are especially rich of essential micronutrients and could substantially contribute to their adequate intake in the human diet. The valorization of bioactive molecules through the extraction from residues of forest biomass, if integrated into wood industry processes, could add value to the wood processing chain, offsetting production costs, providing additional income that could be reinvested in reforestation or afforestation policies, while reducing waste and improving the human health. This chapter also explores the tremendous potential, so far largely underexploited, to improve human mental and physiological health due to the forest healing effects, which is an important emerging forest ecosystem service. The role of biogenic volatile organic compounds emitted by plants in the forest atmosphere is discussed, as an important determinant of long-lasting physiological health benefits, such as the immune-protective ones, deriving from exposure to the forest environment. Forest bathing and forest therapy practices are proposed as a win-win strategy to improve public health while achieving considerable healthcare savings, raise economic and social opportunities in remote areas, and contribute to sustainable forest management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biesalski, H.K., Dragsted, L.O., Elmadfa, I., Grossklaus, R., Müller, M., Schrenk, D., Walter, P., Weber, P.: Bioactive compounds: definition and assessment of activity. Nutrition. 25, 1202–1205 (2009). https://doi.org/10.1016/j.nut.2009.04.023

    Article  Google Scholar 

  2. Tang, G.Y., Meng, X., Li, Y., Zhao, C.N., Liu, Q., Li, H.: Bin effects of vegetables on cardiovascular diseases and related mechanisms. Nutrients. 9 (2017). https://doi.org/10.3390/nu9080857.

  3. Soccio, M., Laus, M.N., Alfarano, M., Dalfino, G., Panunzio, M.F., Pastore, D.: Antioxidant/Oxidant Balance as a novel approach to evaluate the effect on serum of long-term intake of plant antioxidant-rich foods. J. Funct. Foods. 40, 778–784 (2018). https://doi.org/10.1016/j.jff.2017.12.012.

    Article  CAS  Google Scholar 

  4. Burchi, F., Fanzo, J., Frison, E.: The role of food and nutrition system approaches in tackling hidden hunger. Int. J. Environ. Res. Public Health. 8, 358–373 (2011)

    Article  Google Scholar 

  5. United Nations: Transforming our world: the 2030 Agenda for Sustainable Development. Resolution adopted by the General Assembly on 25 September 2015. A/RES/70/1; New York (2015)

    Google Scholar 

  6. Baron, J.H.: Sailors’ scurvy before and after James Lind – a reassessment. Nutr. Rev. 67, 315–332 (2009). https://doi.org/10.1111/j.1753-4887.2009.00205.x.

  7. Sahin, H., Yalcin, O.: Chemical composition and utilization of conifer needles-a review. J. Appl. Life Sci. Int. 14, 1–11 (2017). https://doi.org/10.9734/JALSI/2017/37076

    Article  Google Scholar 

  8. Devappa, R.K., Rakshit, S.K., Dekker, R.F.H.: Forest biorefinery: potential of poplar phytochemicals as value-added co-products. Biotechnol. Adv. 33, 681–716 (2015). https://doi.org/10.1016/j.biotechadv.2015.02.012

    Article  CAS  Google Scholar 

  9. Royer, M., Prado, M., García-Pérez, M.E., Diouf, P.N., Stevanovic, T.: Study of nutraceutical, nutricosmetics and cosmeceutical potentials of polyphenolic bark extracts from Canadian forest species. PharmaNutrition. 1, 158–167 (2013). https://doi.org/10.1016/j.phanu.2013.05.001

    Article  CAS  Google Scholar 

  10. Mármol, I., Quero, J., Jiménez-Moreno, N., Rodríguez-Yoldi, M.J., Ancín-Azpilicueta, C.: A systematic review of the potential uses of pine bark in food industry and health care. Trends Food Sci. Technol. 88, 558–566 (2019). https://doi.org/10.1016/j.tifs.2018.07.007

    Article  CAS  Google Scholar 

  11. Stevanovic, T., Diouf, P.N., Garcia-Perez, M.E.: Bioactive polyphenols from healthy diets and Forest biomass. Curr. Nutr. Food Sci. 5, 264–295 (2009)

    Article  CAS  Google Scholar 

  12. Yesil-Celiktas, O., Ganzera, M., Akgun, I., Sevimli, C., Korkmaza, K.S., Bedira, E.: Determination of polyphenolic constituents and biological activities of bark extracts from different Pinus species. J. Sci. Food Agric. 89, 1339–1345 (2009). https://doi.org/10.1002/jsfa.3591.

    Article  CAS  Google Scholar 

  13. Celiktas, O.Y., Isleten, M., Vardar-Sukan, F., Cetin, E.O.: In vitro release kinetics of pine bark extract enriched orange juice and the shelf stability. Br. Food J. 112, 1063–1076 (2010). https://doi.org/10.1108/00070701011080203.

    Article  Google Scholar 

  14. Kim, S., Park, S., Lee, J., Chang, M., Chung, Y., Lee, T.-K.: Biochemical compositions and biological activities of extracts from 3 species of Korean pine needles. J. Food Nutr. Res. 5, 31–36 (2017). https://doi.org/10.12691/jfnr-5-1-6.

    Article  CAS  Google Scholar 

  15. Sharma, A., Sharma, L., Goyal, R.: A review on Himalayan pine species: ethnopharmacological, phytochemical and pharmacological aspects. Pharmacogn. J. 10, 611–619 (2018)

    Article  CAS  Google Scholar 

  16. Yang, X.-W., Li, S.-M., Shen, Y.-H., Zhang, W.-D.: Phytochemical and biological studies ofAbies species. Chem. Biodivers. 5, 56–81 (2008). https://doi.org/10.1002/cbdv.200890015

    Article  CAS  Google Scholar 

  17. Karkabounas, S., Assimakopoulos, D., Malamas, M., Skaltsounis, A.L., Leonce, S., Zelovitis, J., Stefanou, D., Evangelou, A.: Antiproliferative and anticarcinogenic effects of an aqueous preparation of Abies alba and Viscum album se abies, on a L-1210 malignant cell line and tumor-bearing Wistar rats. Anticancer Res. 20, 4391–4395 (2000)

    CAS  Google Scholar 

  18. Benković, E.T., Grohar, T., Žigon, D., Švajger, U., Janeš, D., Kreft, S., Štrukelj, B.: Chemical composition of the silver fir (Abies alba) bark extract Abigenol®and its antioxidant activity. Ind. Crop. Prod. 52, 23–28 (2014). https://doi.org/10.1016/j.indcrop.2013.10.005.

    Article  Google Scholar 

  19. Tavčar Benković, E., Žigon, D., Mihailović, V., Petelinc, T., Jamnik, P., Kreft, S.: Identification, in vitro and in vivo antioxidant activity, and gastrointestinal stability of Lignans from silver fir (Abies alba) wood extract. J. Wood Chem. Technol. 37, 467–477 (2017). https://doi.org/10.1080/02773813.2017.1340958

    Article  CAS  Google Scholar 

  20. Drevenšek, G., Lunder, M., Benković, E.T., Mikelj, A., Štrukelj, B., Kreft, S.: Silver fir (Abies alba) trunk extract protects Guinea pig arteries from impaired functional responses and morphology due to an atherogenic diet. Phytomedicine. 22, 856–861 (2015). https://doi.org/10.1016/j.phymed.2015.06.004.

    Article  Google Scholar 

  21. Drevenšek, G., Lunder, M., Benković, E.T., Štrukelj, B., Kreft, S.: Cardioprotective effects of silver fir (Abies alba) extract in ischemic-reperfused isolated rat hearts. Food Nutr. Res. 60 (2016). https://doi.org/10.3402/fnr.v60.29623.

  22. Lunder, M., Roškar, I., Hošek, J., Štrukelj, B.: Silver fir (Abies alba) extracts inhibit enzymes involved in blood glucose management and protect against oxidative stress in high glucose environment. Plant Foods Hum. Nutr. (2018). https://doi.org/10.1007/s11130-018-0698-6

  23. Whiteland, H.L., Chakroborty, A., Forde-Thomas, J.E., Crusco, A., Cookson, A., Hollinshead, J., Fenn, C.A., Bartholomew, B., Holdsworth, P.A., Fisher, M., Nash, R.J., Hoffmann, K.F.: An Abeis procera-derived tetracyclic triterpene containing a steroid-like nucleus core and a lactone side chain attenuates in vitro survival of both Fasciola hepatica and Schistosoma mansoni. Int. J. Parasitol. Drugs Drug Resist. 8, 465–474 (2018). https://doi.org/10.1016/j.ijpddr.2018.10.009

    Article  Google Scholar 

  24. Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D., Lightfoot, D.: Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plan. Theory. 6, 42 (2017). https://doi.org/10.3390/plants6040042

    Article  CAS  Google Scholar 

  25. Kumar, V., Nanda, M., Verma, M., Singh, A.: An integrated approach for extracting fuel, chemicals, and residual carbon using pine needles. Biomass Convers. Biorefinery. 8, 447–454 (2018). https://doi.org/10.1007/s13399-018-0304-z

    Article  CAS  Google Scholar 

  26. Albanese, L., Bonetti, A., D’Acqui, L.P., Meneguzzo, F., Zabini, F.: Affordable production of antioxidant aqueous solutions by hydrodynamic cavitation processing of silver fir (Abies Alba mill.) needles. Foods. 8, 65 (2019). https://doi.org/10.3390/foods8020065.

    Article  CAS  Google Scholar 

  27. Hansen, M.M., Jones, R., Tocchini, K.: Shinrin-yoku (Forest bathing) and nature therapy: a state-of-the-art review. Int. J. Environ. Res. Public Health. 14 (2017). https://doi.org/10.3390/ijerph14080851.

  28. Corazon, S.S., Sidenius, U., Poulsen, D.V., Gramkow, M.C., Stigsdotter, U.K.: Psycho-physiological stress recovery in outdoor nature-based interventions: a systematic review of the past eight years of research. Int. J. Environ. Res. Public Health. 16, 1711 (2019). https://doi.org/10.3390/ijerph16101711

    Article  Google Scholar 

  29. Li, Q.: Effect of forest bathing (shinrin-yoku) on human health: a review of the literature. Sante Publique (Paris). 31, 135–143 (2019). https://doi.org/10.3917/spub.190.0135.

    Article  Google Scholar 

  30. Twohig-Bennett, C., Jones, A.: The health benefits of the great outdoors: a systematic review and meta-analysis of greenspace exposure and health outcomes. Environ. Res. 166, 628–637 (2018). https://doi.org/10.1016/j.envres.2018.06.030

    Article  CAS  Google Scholar 

  31. Dodev, Y., Zhiyanski, M., Glushkova, M., Shin, W.S.: Forest welfare services – the missing link between forest policy and management in the EU. For. Policy Econ. 118, 102249 (2020). https://doi.org/10.1016/J.FORPOL.2020.102249

  32. Buckley, R., Brough, P., Hague, L., Chauvenet, A., Fleming, C., Roche, E., Sofija, E., Harris, N.: Economic value of protected areas via visitor mental health. Nat. Commun. 10, 5005 (2019). https://doi.org/10.1038/s41467-019-12631-6.

    Article  CAS  Google Scholar 

  33. Doimo, I., Masiero, M., Gatto, P.: Forest and wellbeing: bridging medical and Forest research for effective Forest-based initiatives. Forests. 11, 791 (2020). https://doi.org/10.3390/f11080791

    Article  Google Scholar 

  34. Kabat-Zinn, J.: An outpatient program in behavioral medicine for chronic pain patients based on the practice of mindfulness meditation: theoretical considerations and preliminary results. Gen. Hosp. Psychiatry. 4, 33–47 (1982). https://doi.org/10.1016/0163-8343(82)90026-3

    Article  CAS  Google Scholar 

  35. Lentz, J.S.: The interplay of the two hemispheres of the brain in psychoanalysis. Am. J. Psychoanal. 78, 217–230 (2018). https://doi.org/10.1057/s11231-018-9145-6

    Article  Google Scholar 

  36. Bang, K.S., Kim, S., Song, M.K., Kang, K.I., Jeong, Y.: The effects of a health promotion program using urban forests and nursing student mentors on the perceived and psychological health of elementary school children in vulnerable populations. Int. J. Environ. Res. Public Health. 15 (2018). https://doi.org/10.3390/ijerph15091977.

  37. Song, C., Ikei, H., Miyazaki, Y.: Physiological effects of nature therapy: a review of the research in Japan. Int. J. Environ. Res. Public Health. 13 (2016)

    Google Scholar 

  38. Tsunetsugu, Y., Park, B.J., Miyazaki, Y.: Trends in research related to “shinrin-yoku” (taking in the forest atmosphere or forest bathing) in Japan. Environ. Health Prev. Med. 15, 27–37 (2010). https://doi.org/10.1007/s12199-009-0091-z

    Article  Google Scholar 

  39. Van den Berg, A.E., Joye, Y., Koole, S.L.: Why viewing nature is more fascinating and restorative than viewing buildings: a closer look at perceived complexity. Urban For. Urban Green. 20, 397–401 (2016). https://doi.org/10.1016/j.ufug.2016.10.011.

    Article  Google Scholar 

  40. Joye, Y., van den Berg, A.: Is love for green in our genes? A critical analysis of evolutionary assumptions in restorative environments research. Urban For. Urban Green. 10, 261–268 (2011). https://doi.org/10.1016/j.ufug.2011.07.004.

    Article  Google Scholar 

  41. Song, C., Ikei, H., Miyazaki, Y.: Physiological effects of visual stimulation with forest imagery. Int. J. Environ. Res. Public Health. 15 (2018). https://doi.org/10.3390/ijerph15020213.

  42. Bielinis, E., Takayama, N., Boiko, S., Omelan, A., Bielinis, L.: The effect of winter forest bathing on psychological relaxation of young Polish adults. Urban For. Urban Green. 29, 276–283 (2018). https://doi.org/10.1016/j.ufug.2017.12.006

    Article  Google Scholar 

  43. Zabini, F., Albanese, L., Becheri, F.R., Gavazzi, G., Giganti, F., Giovanelli, F., Gronchi, G., Guazzini, A., Laurino, M., Li, Q., Marzi, T., Mastorci, F., Meneguzzo, F., Righi, S., Viggiano, M.P.: Comparative study of the restorative effects of Forest and urban videos during COVID-19 lockdown: intrinsic and benchmark values. Int. J. Environ. Res. Public Health. 17, 8011 (2020). https://doi.org/10.3390/ijerph17218011

    Article  Google Scholar 

  44. Ikei, H., Song, C., Miyazaki, Y.: Physiological effects of touching wood. Int. J. Environ. Res. Public Health. 14, 801 (2017). https://doi.org/10.3390/ijerph14070801

    Article  CAS  Google Scholar 

  45. Antonelli, M., Donelli, D., Barbieri, G., Valussi, M., Maggini, V., Firenzuoli, F.: Forest volatile organic compounds and their effects on human health: a state-of-the-art review. Int. J. Environ. Res. Public Health. 17, 6506 (2020). https://doi.org/10.3390/ijerph17186506

    Article  Google Scholar 

  46. Rajoo, K.S., Karam, D.S., Abdullah, M.Z.: The physiological and psychosocial effects of forest therapy: a systematic review. Urban For. Urban Green. 54, 126744 (2020)

    Article  Google Scholar 

  47. White, M.P., Alcock, I., Grellier, J., Wheeler, B.W., Hartig, T., Warber, S.L., Bone, A., Depledge, M.H., Fleming, L.E.: Spending at least 120 minutes a week in nature is associated with good health and wellbeing. Sci. Rep. 9, 7730 (2019). https://doi.org/10.1038/s41598-019-44097-3.

    Article  Google Scholar 

  48. van den Bosch, M., Meyer-Lindenberg, A.: Environmental exposures and depression: biological mechanisms and epidemiological evidence. Annu. Rev. Public Health. 40, 239–259 (2019). https://doi.org/10.1146/annurev-publhealth-040218-044106.

    Article  Google Scholar 

  49. Bratman, G.N., Anderson, C.B., Berman, M.G., Cochran, B., de Vries, S., Flanders, J., Folke, C., Frumkin, H., Gross, J.J., Hartig, T., Kahn, P.H., Kuo, M., Lawler, J.J., Levin, P.S., Lindahl, T., Meyer-Lindenberg, A., Mitchell, R., Ouyang, Z., Roe, J., Scarlett, L., Smith, J.R., van den Bosch, M., Wheeler, B.W., White, M.P., Zheng, H., Daily, G.C.: Nature and mental health: an ecosystem service perspective. Sci. Adv. 5, eaax0903 (2019). https://doi.org/10.1126/sciadv.aax0903

    Article  Google Scholar 

  50. Sen, M. Forests: at the heart of a green recovery from the COVID-19 pandemic. UN/DESA Policy Brief #80. Geneva, Switzerland (2020). https://www.un.org/development/desa/dpad/publication/un-desa-policy-brief-80-forests-at-the-heart-of-a-green-recovery-from-the-covid-19-pandemic/

  51. FAO and UNEP: The State of the World’s Forests 2020. Forests, Biodiversity and People. Food and Agriculture Organization of the United Nations, Rome (2020) ISBN 9789251324196

    Google Scholar 

  52. Saraev, V., O’Brien, L., Valatin, G., Atkinson, M., Bursnell, M.: The Research Agency of the Forestry Commission. Scoping Study on Valuing Mental Health Benefits of Forests, UK (2020)

    Google Scholar 

  53. Mipaaf – Consultazione pubblica – Strategia Forestale Nazionale per il settore forestale e le sue filiere Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/15339. Accessed on May 31, 2020

  54. Wen, Y., Yan, Q., Pan, Y., Gu, X., Liu, Y.: Medical empirical research on forest bathing (Shinrin-yoku): a systematic review. Environ. Health Prev. Med. 24 (2019). https://doi.org/10.1186/s12199-019-0822-8

  55. Song, C., Ikei, H., Miyazaki, Y.: Elucidation of a physiological adjustment effect in a forest environment: a pilot study. Int. J. Environ. Res. Public Health. 12, 4247–4255 (2015). https://doi.org/10.3390/ijerph120404247

    Article  Google Scholar 

  56. Lee, I., Choi, H., Bang, K.S., Kim, S., Song, M.K., Lee, B.: Effects of forest therapy on depressive symptoms among adults: a systematic review. Int. J. Environ. Res. Public Health. 14, 321 (2017)

    Google Scholar 

  57. Im, S., Choi, H., Jeon, Y.-H., Song, M.-K., Kim, W., Woo, J.-M., Im, S.G., Choi, H., Jeon, Y.-H., Song, M.-K., Kim, W., Woo, J.-M.: Comparison of effect of two-hour exposure to Forest and urban environments on cytokine, anti-oxidant, and stress levels in young adults. Int. J. Environ. Res. Public Health. 13, 625 (2016). https://doi.org/10.3390/ijerph13070625

    Article  CAS  Google Scholar 

  58. Furuyashiki, A., Tabuchi, K., Norikoshi, K., Kobayashi, T., Oriyama, S.: A comparative study of the physiological and psychological effects of forest bathing (Shinrin-yoku) on working age people with and without depressive tendencies. Environ. Health Prev. Med. 24, 46 (2019). https://doi.org/10.1186/s12199-019-0800-1.

    Article  Google Scholar 

  59. Chun, M.H., Chang, M.C., Lee, S.J.: The effects of forest therapy on depression and anxiety in patients with chronic stroke. Int. J. Neurosci. 127, 199–203 (2017). https://doi.org/10.3109/00207454.2016.1170015

    Article  CAS  Google Scholar 

  60. Morita, E., Fukuda, S., Nagano, J., Hamajima, N., Yamamoto, H., Iwai, Y., Nakashima, T., Ohira, H., Shirakawa, T.: Psychological effects of forest environments on healthy adults: Shinrin-yoku (forest-air bathing, walking) as a possible method of stress reduction. Public Health. 121, 54–63 (2007). https://doi.org/10.1016/j.puhe.2006.05.024

    Article  CAS  Google Scholar 

  61. Kotera, Y.: Effects of shinrin-yoku (forest bathing) and nature therapy on mental health: a systematic review and meta-analysis. Int. J. Ment. Health Addict. (2020). https://doi.org/10.13140/RG.2.2.12423.21920

  62. Yi, J., Ku, B., Kim, S.G., Khil, T., Lim, Y., Shin, M., Jeon, S., Kim, J., Kang, B., Shin, J., Kim, K., Jeong, A.Y., Park, J.H., Choi, J., Cha, W., Shin, C., Shin, W., Kim, J.U.: Traditional korean medicine-based forest therapy programs providing electrophysiological benefits for elderly individuals. Int. J. Environ. Res. Public Health. 16, 4325 (2019). https://doi.org/10.3390/ijerph16224325

    Article  Google Scholar 

  63. Shin, Y.K., Kim, D.J., Jung-Choi, K., Son, Y.J., Koo, J.W., Min, J.A., Chae, J.H.: Differences of psychological effects between meditative and athletic walking in a forest and gymnasium. Scand. J. For. Res. 28, 64–72 (2013). https://doi.org/10.1080/02827581.2012.706634

    Article  Google Scholar 

  64. Farrow, M.R., Washburn, K.: A review of field experiments on the effect of Forest bathing on anxiety and heart rate variability. Glob. Adv. Heal. Med. 8, 216495611984865 (2019). https://doi.org/10.1177/2164956119848654

    Article  Google Scholar 

  65. Ochiai, H., Ikei, H., Song, C., Kobayashi, M., Takamatsu, A., Miura, T., Kagawa, T., Li, Q., Kumeda, S., Imai, M., Miyazaki, Y.: Physiological and psychological effects of forest therapy on middle-aged males with high-normal blood pressure. Int. J. Environ. Res. Public Health. 12, 2532–2542 (2015). https://doi.org/10.3390/ijerph120302532

    Article  Google Scholar 

  66. Oh, B., Lee, K.J., Zaslawski, C., Yeung, A., Rosenthal, D., Larkey, L., Back, M.: Health and well-being benefits of spending time in forests: systematic review. Environ. Health Prev. Med. 22, 71 (2017). https://doi.org/10.1186/s12199-017-0677-9.

    Article  Google Scholar 

  67. Sonntag-Öström, E., Nordin, M., Dolling, A., Lundell, Y., Nilsson, L., Slunga Järvholm, L.: Can rehabilitation in boreal forests help recovery from exhaustion disorder? The randomised clinical trial ForRest. Scand. J. For. Res. 30, 732–748 (2015). https://doi.org/10.1080/02827581.2015.1046482

    Article  Google Scholar 

  68. Bielinis, E., Jaroszewska, A., Łukowski, A., Takayama, N.: The effects of a Forest therapy Programme on mental hospital patients with affective and psychotic disorders. Int. J. Environ. Res. Public Health. 17, 118 (2019). https://doi.org/10.3390/ijerph17010118

    Article  Google Scholar 

  69. Ideno, Y., Hayashi, K., Abe, Y., Ueda, K., Iso, H., Noda, M., Lee, J.S., Suzuki, S.: Blood pressure-lowering effect of Shinrin-yoku (Forest bathing): a systematic review and meta-analysis. BMC Complement. Altern. Med. 17 (2017). https://doi.org/10.1186/s12906-017-1912-z

  70. Bielinis, E., Bielinis, L., Krupińska-Szeluga, S., Łukowski, A., Takayama, N.: The effects of a short forest recreation program on physiological and psychological relaxation in young Polish adults. Forests. 10 (2019). https://doi.org/10.3390/f10010034

  71. Ochiai, H., Ikei, H., Song, C., Kobayashi, M., Miura, T., Kagawa, T., Li, Q., Kumeda, S., Imai, M., Miyazaki, Y.: Physiological and psychological effects of a forest therapy program on middle-aged females. Int. J. Environ. Res. Public Health. 12, 15222–15232 (2015). https://doi.org/10.3390/ijerph121214984

    Article  CAS  Google Scholar 

  72. Park, B.J., Tsunetsugu, Y., Kasetani, T., Kagawa, T., Miyazaki, Y.: The physiological effects of Shinrin-yoku (taking in the forest atmosphere or forest bathing): evidence from field experiments in 24 forests across Japan. Environ. Health Prev. Med. 15, 18–26 (2010). https://doi.org/10.1007/s12199-009-0086-9

    Article  Google Scholar 

  73. Yu, C.P., Lin, C.M., Tsai, M.J., Tsai, Y.C., Chen, C.Y.: Effects of short forest bathing program on autonomic nervous system activity and mood states in middle-aged and elderly individuals. Int. J. Environ. Res. Public Health. 14 (2017). https://doi.org/10.3390/ijerph14080897.

  74. Kim, H., Lee, Y.W., Ju, H.J., Jang, B.J., Kim, Y.I.: An exploratory study on the effects of forest therapy on sleep quality in patients with gastrointestinal tract cancers. Int. J. Environ. Res. Public Health. 16 (2019). https://doi.org/10.3390/ijerph16142449.

  75. Li, Q., Kobayashi, M., Inagaki, H., Hirata, Y., Li, Y.J., Hirata, K., Shimizu, T., Suzuki, H., Katsumata, M., Wakayama, Y., Kawada, T., Ohira, T., Matsui, N., Kagawa, T.: A forest bathing trip increases human natural killer activity and expression of anti-cancer proteins in females subjects. J. Biol. Regul. Homeost. Agents. 24, 157–165 (2010)

    CAS  Google Scholar 

  76. Li, Q., Morimoto, K., Kobayashi, M., Inagaki, H., Katsumata, M., Hirata, Y., Hirata, K., Suzuki, H., Li, Y.J., Wakayama, Y., Kawada, T., Park, B.J., Ohira, T., Matsui, N., Kagawa, T., Miyazaki, Y., Krensky, A.M.: Visiting a forest, but not a city, increases human natural killer activity and expression of anti-cancer proteins. Int. J. Immunopathol. Pharmacol. 21, 117–127 (2008). https://doi.org/10.1177/039463200802100113

    Article  CAS  Google Scholar 

  77. Li, Q., Otsuka, T., Kobayashi, M., Wakayama, Y., Inagaki, H., Katsumata, M., Hirata, Y., Li, Y., Hirata, K., Shimizu, T., Suzuki, H., Kawada, T., Kagawa, T.: Acute effects of walking in forest environments on cardiovascular and metabolic parameters. Eur. J. Appl. Physiol. 111, 2845–2853 (2011). https://doi.org/10.1007/s00421-011-1918-z.

    Article  CAS  Google Scholar 

  78. Li, Q., Kobayashi, M., Kumeda, S., Ochiai, T., Miura, T., Kagawa, T., Imai, M., Wang, Z., Otsuka, T., Kawada, T.: Effects of Forest bathing on cardiovascular and metabolic parameters in middle-aged males. Evid. Based Complement. Altern. Med. 2016, 1–7 (2016). https://doi.org/10.1155/2016/2587381

    Article  Google Scholar 

  79. Lee, K.J., Hur, J., Yang, K.S., Lee, M.K., Lee, S.J.: Acute biophysical responses and psychological effects of different types of forests in patients with metabolic syndrome. Environ. Behav. 50, 298–323 (2018). https://doi.org/10.1177/0013916517700957.

    Article  Google Scholar 

  80. Park, B.J., Shin, C.S., Shin, W.S., Chung, C.Y., Lee, S.H., Kim, D.J., Kim, Y.H., Park, C.E.: Effects of forest therapy on health promotion among middle-aged women: focusing on physiological indicators. Int. J. Environ. Res. Public Health. 17, 1–15 (2020). https://doi.org/10.3390/ijerph17124348.

    Article  Google Scholar 

  81. Antonelli, M., Barbieri, G., Donelli, D.: Effects of forest bathing (shinrin-yoku) on levels of cortisol as a stress biomarker: a systematic review and meta-analysis. Int. J. Biometeorol. 63, 1117–1134 (2019). https://doi.org/10.1007/s00484-019-01717-x

    Article  Google Scholar 

  82. Tsao, T.M., Tsai, M.J., Hwang, J.S., Cheng, W.F., Wu, C.F., Chou, C.C.K., Su, T.C.: Health effects of a forest environment on natural killer cells in humans: an observational pilot study. Oncotarget. 9, 16501–16511 (2018). https://doi.org/10.18632/oncotarget.24741.

    Article  Google Scholar 

  83. Li, Q., Kobayashi, M., Wakayama, Y., Inagaki, H., Katsumata, M., Hirata, Y., Hirata, K., Shimizu, T., Kawada, T., Park, B.J., Ohira, T., Kagawa, T., Miyazaki, Y.: Effect of phytoncide from trees on human natural killer cell function. Int. J. Immunopathol. Pharmacol. 22, 951–959 (2009)

    Article  CAS  Google Scholar 

  84. Li, Q.: Effect of forest bathing trips on human immune function. Environ. Health Prev. Med. 15, 9–17 (2010). https://doi.org/10.1007/s12199-008-0068-3

    Article  CAS  Google Scholar 

  85. Li, Q., Morimoto, K., Nakadai, A., Inagaki, H., Katsumata, M., Shimizu, T., Hirata, Y., Hirata, K., Suzuki, H., Miyazaki, Y., Kagawa, T., Koyama, Y., Ohira, T., Takayama, N., Krensky, A.M., Kawada, T.: Forest bathing enhances human natural killer activity and expression of anti-cancer proteins. Int. J. Immunopathol. Pharmacol. 20, 3–8 (2007). https://doi.org/10.1177/03946320070200S202

  86. Li, Q., Nakadai, A., Matsushima, H., Miyazaki, Y., Krensky, A., Kawada, T., Morimoto, K.: Phytoncides (wood essential oils) induce human natural killer cell activity. Immunopharmacol. Immunotoxicol. 28, 319–333 (2006). https://doi.org/10.1080/08923970600809439

    Article  CAS  Google Scholar 

  87. Han, J.W., Choi, H., Jeon, Y.H., Yoon, C.H., Woo, J.M., Kim, W.: The effects of forest therapy on coping with chronic widespread pain: physiological and psychological differences between participants in a forest therapy program and a control group. Int. J. Environ. Res. Public Health. 13 (2016). https://doi.org/10.3390/ijerph13030255.

  88. Lyu, B., Zeng, C., Xie, S., Li, D., Lin, W., Li, N., Jiang, M., Liu, S., Chen, Q.: Benefits of a three-day bamboo forest therapy session on the psychophysiology and immune system responses of male college students. Int. J. Environ. Res. Public Health. 16, 4991 (2019). https://doi.org/10.3390/ijerph16244991

    Article  Google Scholar 

  89. Kim, B.J., Jeong, H., Park, S., Lee, S.: Forest adjuvant anti-cancer therapy to enhance natural cytotoxicity in urban women with breast cancer: a preliminary prospective interventional study. Eur. J. Integr. Med. 7, 474–478 (2015). https://doi.org/10.1016/j.eujim.2015.06.004

    Article  Google Scholar 

  90. Seo, S.C., Park, S.J., Park, C.W., Yoon, W.S., Choung, J.T., Yoo, Y.: Clinical and immunological effects of a forest trip in children with asthma and atopic dermatitis. Iran. J. Allergy Asthma Immunol. 14, 28–36 (2015)

    Google Scholar 

  91. Rojas-Rueda, D., Nieuwenhuijsen, M., Gascon, M., Perez-Leon, D., Mudu, P.: Green spaces and mortality: a systematic review and meta-analysis of cohort studies. Lancet Planet Heal. 3, 469–477 (2019). https://doi.org/10.1016/S2542-5196(19)30215-3

    Article  Google Scholar 

  92. Roviello, V., Roviello, G.N.: Lower COVID-19 mortality in Italian forested areas suggests immunoprotection by Mediterranean plants. Environ. Chem. Lett. (2020). https://doi.org/10.1007/s10311-020-01063-0

  93. Wang, D.H., Yamada, A., Miyanaga, M.: Changes in urinary hydrogen peroxide and 8-hydroxy-2′-deoxyguanosine levels after a forest walk: a pilot study. Int. J. Environ. Res. Public Health. 15, 1871 (2018). https://doi.org/10.3390/ijerph15091871

    Article  CAS  Google Scholar 

  94. Yamada, A., Sato, Y., Horike, T., Miyanaga, M., Wang, D.-H., Shin-ai Junior, W., High School, S.: Effects of a Forest Walk on Urinary Dityrosine and Hexanoyl-Lysine in Young People: A Pilot Study. Int. J. Environ. Res. Public Heal. 17, 4990 (2020). https://doi.org/10.3390/ijerph17144990

  95. Hassan, A., Tao, J., Li, G., Jiang, M., Aii, L., Zhihui, J., Zongfang, L., Qibing, C.: Effects of walking in Bamboo Forest and City environments on brainwave activity in young adults. Evid. Based Complement. Altern. Med. 2018, 1–9 (2018). https://doi.org/10.1155/2018/9653857

    Article  Google Scholar 

  96. Chen, Z., He, Y., Yu, Y.: Attention restoration during environmental exposure via alpha-theta oscillations and synchronization. J. Environ. Psychol. 68, 101406 (2020). https://doi.org/10.1016/j.jenvp.2020.101406

    Article  Google Scholar 

  97. Choe, E.Y., Jorgensen, A., Sheffield, D.: Simulated natural environments bolster the effectiveness of a mindfulness programme: a comparison with a relaxation-based intervention. J. Environ. Psychol. 67, 101382 (2020). https://doi.org/10.1016/j.jenvp.2019.101382

    Article  Google Scholar 

  98. Sumitomo, K., Akutsu, H., Fukuyama, S., Minoshima, A., Kukita, S., Yamamura, Y., Sato, Y., Hayasaka, T., Osanai, S., Funakoshi, H., Hasebe, N., Nakamura, M.: Conifer-derived monoterpenes and Forest walking. Mass Spectrom. 4, A0042–A0042 (2015). https://doi.org/10.5702/massspectrometry.a0042

    Article  CAS  Google Scholar 

  99. Dudareva, N., Negre, F., Nagegowda, D.A., Orlova, I.: Plant volatiles: recent advances and future perspectives. CRC. Crit. Rev. Plant Sci. 25, 417–440 (2006). https://doi.org/10.1080/07352680600899973

    Article  CAS  Google Scholar 

  100. Peñuelas, J., Staudt, M.: BVOCs and global change. Trends Plant Sci. 15, 133–144 (2010). https://doi.org/10.1016/j.tplants.2009.12.005

    Article  CAS  Google Scholar 

  101. Loreto, F., Dicke, M., Schnitzler, J.P., Turlings, T.C.J.: Plant volatiles and the environment. Plant Cell Environ. 37, 1905–1908 (2014). https://doi.org/10.1111/pce.12369

    Article  Google Scholar 

  102. Laothawornkitkul, J., Taylor, J.E., Paul, N.D., Hewitt, C.N.: Biogenic volatile organic compounds in the Earth system. New Phytol. 183, 27–51 (2009). https://doi.org/10.1111/j.1469-8137.2009.02859.x

    Article  CAS  Google Scholar 

  103. Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.K., Wang, X.: The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5, 1471–1492 (2012). https://doi.org/10.5194/gmd-5-1471-2012.

    Article  Google Scholar 

  104. Šimpraga, M., Ghimire, R.P., Van Der Straeten, D., Blande, J.D., Kasurinen, A., Sorvari, J., Holopainen, T., Adriaenssens, S., Holopainen, J.K., Kivimäenpää, M.: Unravelling the functions of biogenic volatiles in boreal and temperate forest ecosystems. Eur. J. For. Res. 138, 763–787 (2019). https://doi.org/10.1007/s10342-019-01213-2.

    Article  Google Scholar 

  105. Loreto, F., Bagnoli, F., Fineschi, S.: One species, many terpenes: matching chemical and biological diversity. Trends Plant Sci. 14, 416–420 (2009). https://doi.org/10.1016/j.tplants.2009.06.003

    Article  CAS  Google Scholar 

  106. Niinemets, Ü., Loreto, F., Reichstein, M.: Physiological and physicochemical controls on foliar volatile organic compound emissions. Trends Plant Sci. 9, 180–186 (2004). https://doi.org/10.1016/j.tplants.2004.02.006

    Article  CAS  Google Scholar 

  107. Sieniawska, E., Sawicki, R., Swatko-Ossor, M., Napiorkowska, A., Przekora, A., Ginalska, G., Augustynowicz-Kopec, E.: The effect of combining natural terpenes and antituberculous agents against reference and clinical mycobacterium tuberculosis strains. Molecules. 23, 176 (2018). https://doi.org/10.3390/molecules23010176

    Article  CAS  Google Scholar 

  108. Cho, K.S., Lim, Y.-R., Lee, K., Lee, J., Lee, J.H., Lee, I.-S.: Terpenes from forests and human health. Toxicol. Res. 33, 97–106 (2017). https://doi.org/10.5487/TR.2017.33.2.097

    Article  CAS  Google Scholar 

  109. Peterfalvi, A., Miko, E., Nagy, T., Reger, B., Simon, D., Miseta, A., Czéh, B., Szereday, L.: Much more than a pleasant scent: a review on essential oils supporting the immune system. Molecules. 24, 4530 (2019). https://doi.org/10.3390/molecules24244530

    Article  CAS  Google Scholar 

  110. Kim, T., Song, B., Cho, K.S., Lee, I.-S.: Therapeutic potential of volatile terpenes and Terpenoids from forests for inflammatory diseases. Int. J. Mol. Sci. 21, 2187 (2020). https://doi.org/10.3390/ijms21062187

    Article  CAS  Google Scholar 

  111. Woo, J., Lee, C.J.: Sleep-enhancing effects of Phytoncide via behavioral, electrophysiological, and molecular modeling approaches. Exp. Neurobiol. 29, 120–129 (2020). https://doi.org/10.5607/en20013

    Article  Google Scholar 

  112. Wojtunik-Kulesza, K.A., Kasprzak, K., Oniszczuk, T., Oniszczuk, A.: Natural monoterpenes: much more than only a scent. Chem. Biodivers. 16, e1900434 (2019). https://doi.org/10.1002/cbdv.201900434

    Article  CAS  Google Scholar 

  113. Shin, M., Liu, Q.F., Choi, B., Shin, C., Lee, B., Yuan, C., Song, Y.J., Yun, H.S., Lee, I.-S., Koo, B.-S., Cho, K.S.: Neuroprotective effects of limonene (+) against Aβ42-induced neurotoxicity in a Drosophila model of Alzheimer’s disease. Biol. Pharm. Bull. 43, 409–417 (2019). https://doi.org/10.1248/bpb.b19-00495.

    Article  Google Scholar 

  114. Meneguzzo, F., Albanese, L., Bartolini, G., Zabini, F.: Temporal and spatial variability of volatile organic compounds in the Forest atmosphere. Int. J. Environ. Res. Public Health. 16, 4915 (2019). https://doi.org/10.3390/ijerph16244915

    Article  CAS  Google Scholar 

  115. Bach, A., Y, A.M., Llusi, J., Filella, I., Maneja, R., Penuelas, J.: Human breathable air in a Mediterranean Forest: characterization of monoterpene concentrations under the canopy. Int. J. Environ. Res. Public Health. 17, 4391 (2020). https://doi.org/10.3390/ijerph17124391.

    Article  CAS  Google Scholar 

  116. Kim, G., Park, S., Kwak, D.: Is it possible to predict the concentration of natural volatile organic compounds in forest atmosphere? Int. J. Environ. Res. Public Health. 17, 1–12 (2020). https://doi.org/10.3390/ijerph17217875.

    Article  Google Scholar 

  117. Grote, R., Samson, R., Alonso, R., Amorim, J.H., Cariñanos, P., Churkina, G., Fares, S., Le Thiec, D., Niinemets, Ü., Mikkelsen, T.N., Paoletti, E., Tiwary, A., Calfapietra, C.: Functional traits of urban trees: air pollution mitigation potential. Front. Ecol. Environ. 14, 543–550 (2016). https://doi.org/10.1002/fee.1426

    Article  Google Scholar 

  118. Bach Pagès, A., Peñuelas, J., Clarà, J., Llusià, J., Campillo, i., López, F., Maneja, R.: How should forests be characterized in regard to human health? Evidence from existing literature. Int. J. Environ. Res. Public Health. 17, 1027 (2020). https://doi.org/10.3390/ijerph17031027.

    Article  Google Scholar 

  119. Sacchelli, S., Grilli, G., Capecchi, I., Bambi, L., Barbierato, E., Borghini, T.: Neuroscience application for the analysis of cultural ecosystem services related to stress relief in Forest. Forests. 11, 190 (2020). https://doi.org/10.3390/f11020190

    Article  Google Scholar 

  120. Chiang, Y.C., Li, D., Jane, H.A.: Wild or tended nature? The effects of landscape location and vegetation density on physiological and psychological responses. Landsc. Urban Plan. 167, 72–83 (2017). https://doi.org/10.1016/j.landurbplan.2017.06.001

    Article  Google Scholar 

  121. Cervinka, R., Schwab, M., Haluza, D.: Investigating the qualities of a recreational Forest: findings from the cross-sectional Hallerwald case study. Int. J. Environ. Res. Public Health. 17, 1676 (2020). https://doi.org/10.3390/ijerph17051676

    Article  Google Scholar 

  122. Simkin, J., Ojala, A., Tyrväinen, L.: Restorative effects of mature and young commercial forests, pristine old-growth forest and urban recreation forest – a field experiment. Urban For. Urban Green., 126567 (2019). https://doi.org/10.1016/J.UFUG.2019.126567.

  123. Nabhan, G.P., Orlando, L., Smith Monti, L., Aronson, J.: Hands-on ecological restoration as a nature-based health intervention: reciprocal restoration for people and ecosystems. Ecopsychology. 12, 195–202 (2020). https://doi.org/10.1089/eco.2020.0003

    Article  Google Scholar 

  124. Buckley, R.C.: Therapeutic mental health effects perceived by outdoor tourists: a large-scale, multi-decade, qualitative analysis. Ann. Tour. Res. 77, 164–167 (2019). https://doi.org/10.1016/j.annals.2018.12.017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meneguzzo, F., Zabini, F. (2021). Forest Ecosystem Services for Human Health. In: Agri-food and Forestry Sectors for Sustainable Development. Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-030-66284-4_4

Download citation

Publish with us

Policies and ethics