Skip to main content

Application of Internet of Thing and Cyber Physical System in Industry 4.0 Smart Manufacturing

  • Chapter
  • First Online:
Emergence of Cyber Physical System and IoT in Smart Automation and Robotics

Abstract

The advent of Industry 4.0 has moved the manufacturing industry to recent models of Internet of Things (IoT), cyber physical systems (CPS), cloud manufacturing, fog computing, big data analytics, among others. Data has become more ubiquitous with the increase in the development of mobile and wireless networking technologies. Also, due to high expectations for productivity improvement, efficiency, and enabling innovative service through collaborative means, IoT is attracting much attention. CPS is the integration of computational objects in fitting together with the corporal biosphere and its procedures. CPSs are complicated manufacturing systems with the goal to combine and harmonize mechanism biosphere and industrial capability to the cyber computational space. Nevertheless, having thorough interconnectivity and a computational platform is essential for a practicable application of CPSs and smart factories. Smart manufacturing, also known as Industry 4.0 or Industry Internet of Things (IIoT), is increasingly becoming the common goal of various industrial and national strategies. For a better implementation of smart manufacturing, smart interconnection is one of the most significant issues. Current technologies, however, are not yet completely equipped for smart interconnection while working with heterogeneous hardware, fast setup, and delivery, as well as online service generation. In this chapter, the effects of IoT technology and CPS in the advancement and awareness of real-life smart manufacturing is addressed. An integrated IoT and CPS framework is recommended as a specification for researchers and industries toward the full realization of the potentials of IoT with CPS in the development of Industry 4.0 smart manufacturing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berger, C. (2014). Scenario pattern matching in large sensor recordings with simulation models for cyber-physical systems. In Proceedings of Society for Computer Simulation International’s Summer Simulation Multi-conference (p. 38).

    Google Scholar 

  • Böhm, M., Leimeister, S., Ried, C., & Krcmar, H. (2011). Cloud computing—Outsourcing 2.0 or a new business model for IT provisioning? In F. Keuper, C. Oecking, & A. Degenhardt (Eds.), Proceedings of Application Management (pp. 31–56). Gabler.

    Google Scholar 

  • Bordel, B., Alcarria, R., Robles, T., & Martin, D. (2017). Cyber-physical systems: Extending pervasive sensing from control theory to the Internet of Things. Pervasive and Mobile Computing. https://doi.org/10.1016/j.pmcj.2017.06.011.

    Article  Google Scholar 

  • Borgia, E. (2014). The internet of things vision: Key features, applications and open issues. Computer Communications, 54, 1–31. https://doi.org/10.1016/j.comcom.2014.09.008.

    Article  Google Scholar 

  • Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, M. (2014). How virtualization, decentralization and network building change the manufacturing landscape: An Industry 4.0 perspective. International Journal of Mechanical, Industrial Science and Engineering, 8(1): 37–44.

    Google Scholar 

  • Consortium, II. (2019). Industry 4.0 definition industrial internet factsheet. https://www.iiconsortium.org/docs/IIC_FACT_SHEET.pdf.

  • Drath, R., & Horch, A. (2014). Industrie 4.0: Hit or hype? IEEE Industrial Electronics Magazine, 8(2), 56–58.

    Google Scholar 

  • Gunes, V., Peter, S., Givargis, T., & Vahid, F. (2014). A survey on concepts, applications, and challenges in cyber-physical systems. KSII Transactions on Internet and Information Systems, 8(12), 4242–4268. https://doi.org/10.3837/tiis.2014.12.001.

    Article  Google Scholar 

  • Hahanov, V. (2018). Cyber physical computing for IoT-driven services. In Cyber physical computing for IoT-driven services. https://doi.org/10.1007/978-3-319-54825-8.

  • Hahanov, V. I., Amer, T. B., Chumachenko, S. V., & Litvinova, E. I. (2015). Qubit technology analysis and diagnosis of digital devices. Electronic Modeling J, 37(3), 17–40.

    Google Scholar 

  • Hehenberger, P., Vogel-Heuser, B., Bradley, D., Eynard, B., Tomiyama, T., & Achiche, S. (2016). Design, modelling, simulation and integration of cyber physical systems: Methods and applications. Computers in Industry, 82, 273–289. https://doi.org/10.1016/j.compind.2016.05.006.

    Article  Google Scholar 

  • Hermann, M., Pentek, T., & Otto, B. (2016). Design principles for industrie 4.0 scenarios. In Proceedings of the Annual Hawaii International Conference on System Sciences, 2016-March, (pp. 3928–3937). https://doi.org/10.1109/HICSS.2016.488.

  • Hunter, T., Das, T., Zaharia, M., Abbeel, P., & Bayen, A. M. (2013). Large-scale estimation incyber physical systems using streaming data: A case study with arterial tra ± c estimation. IEEE Transactions on Automation Science and Engineering, 10(4), 884–898.

    Article  Google Scholar 

  • Hyseni, D., Çiço, B., & Selimi, B. (2016). Conception, design and implementation of an interface for security in cloud controlled by the end user. International Journal on Information Technologies & Security, 8(2).

    Google Scholar 

  • Kagermann, H., & Wahlster, W. (2016). Industrie 4.0: Smart manufacturing for the future. Berlin, Germany: Germany Trade and Invest.

    Google Scholar 

  • Kim, S., & Park, S. (2017). CPS (cyber physical system) based manufacturing system optimization. Procedia Computer Science, 122, 518–524. https://doi.org/10.1016/j.procs.2017.11.401.

    Article  Google Scholar 

  • Kumar, A., & Nayyar, A. (2020). si3-Industry: A sustainable, intelligent, innovative, internet-of-things industry. In A roadmap to Industry 4.0: Smart production, sharp business and sustainable development (pp. 1–21). Cham: Springer.

    Google Scholar 

  • Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & Information Systems Engineering, 6(4), 239–242. https://doi.org/10.1007/s12599-014-0334-4.

  • Lee, E. A. (2008). Cyber physical systems: Design challenges in object oriented real-time distributed computing. In 11th IEEE International Symposium on Distributed Computing (ISORC) (pp. 363–369).

    Google Scholar 

  • Lee, J., Azamfar, M., & Singh, J. (2019). A blockchain enabled cyber-physical system architecture for Industry 4.0 manufacturing systems. Manufacturing Letters, 20, 34–39.

    Google Scholar 

  • Liu, L., Zhao, S., Yu, Z., & Dai, H. (2015). A big data inspired chaotic solution for fuzzy feedback linearization model in cyber-physical systems. Ad Hoc Networks, 35, 97–104.

    Article  Google Scholar 

  • Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of Industrial Information Integration, 6, 1–10. https://doi.org/10.1016/j.jii.2017.04.005.

  • Marini, A., & Bianchini, D. (2016). Big data as a service for monitoring cyber-physical production systems. In ECMS, (pp. 579–586).

    Google Scholar 

  • Mell, P. M., & Grance, T. (2011). The NIST definition of cloud computing (800–145).

    Google Scholar 

  • Monostori, L., Kadar, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., & Ueda, K. (2016). Cyber-physical systems in manufacturing. CIRP Annals-Manufacturing Technology, 65(2) 621–641 (2016).

    Google Scholar 

  • Niggemann, O., Biswas, G., Kinnebrew, J. S., Khorasgani, H., Volgmann, S., & Bunte, A. (2015). Data-driven monitoring of cyber-physical systems leveraging on big data and the internet-of-things for diagnosis and control. In DX@ safe process (pp. 185–192).

    Google Scholar 

  • O’donovan, P., Gallagher, C., Bruton, K., & O’Sullivan, D. T. (2018). A fog computing industrial cyber-physical system for embedded low-latency machine learning Industry 4.0 applications. Manufacturing Letters, 15, 139–142.

    Google Scholar 

  • Ochoa, S. F., Fortino, G., & Di Fatta, G. (2017). Cyber-physical systems, internet of things and big data. Future Generation Computer Systems, 75, 82–84. https://doi.org/10.1016/j.future.2017.05.040.

    Article  Google Scholar 

  • Padikkapparambil, J., Ncube, C., Singh, K. K., & Singh, A. (2020). Internet of things technologies for elderly health-care applications. In Emergence of pharmaceutical industry growth with industrial IoT approach (pp. 217–243). Academic Press.

    Google Scholar 

  • Ruhse, K. U., & Baturova, M. (2012). Cloud computing: Cloud computing as an integral part of a modern IT strategy. ISACA Journal, 3, 6.

    Google Scholar 

  • Sehgal, A., Agrawal, R., Bhardwaj, R., & Singh, K. K. (2020). Reliability analysis of wireless link for IOT applications under shadow-fading conditions. Procedia Computer Science, 167, 1515–1523.

    Article  Google Scholar 

  • Shih, C. S., Chou, J. J., Reijers, N., & Kuo, T. W. (2016). Designing CPS/IoT applications for smart buildings and cities. IET Cyber-Physical Systems: Theory & Applications, 1(1), 3–12. https://doi.org/10.1049/iet-cps.2016.0025.

    Article  Google Scholar 

  • Singh, A. K., Firoz, N., Tripathi, A., Singh, K. K., Choudhary, P., & Vashist, P. C. (2020a). Internet of things: From hype to reality. In An industrial IoT approach for pharmaceutical industry growth (Vol. 2, pp. 191).

    Google Scholar 

  • Singh, P., Nayyar, A., Kaur, A., & Ghosh, U. (2020b). Blockchain and fog based architecture for internet of everything in smart cities. Future Internet, 12(4), 61.

    Google Scholar 

  • Singh, M., Sachan, S., Singh, A., & Singh, K. K. (2020c). Internet of things in pharma industry: Possibilities and challenges. In Emergence of pharmaceutical industry growth with industrial IoT approach (pp. 195–216). Academic Press.

    Google Scholar 

  • Sztipanovits, J., Koutsoukos, X., Karsai, G., Kottenstette, N., Antsaklis, P., Gupta, V., et al. (2012). Toward a science of cyber-physical system integration. Proceedings of the IEEE, 100(1), 29–44.

    Article  Google Scholar 

  • Tan, Y., Yang, W., Yoshida, K., & Takakuwa, S. (2019). Application of IoT-aided simulation to manufacturing systems in cyber-physical system. Machines, 7(1), 2.

    Article  Google Scholar 

  • Tao, F., Qi, Q., Wang, L. & Nee, A. Y. C. (2019). Digital twins and cyber–physical systems toward smart manufacturing and Industry 4.0: Correlation and comparison. Engineering, 5(4), 653–661.

    Google Scholar 

  • Tu, M. K., Lim, M., & Yang, M. F. (2016). Internet of things-based production logistics and supply chain system-Part 2 : IoT-based cyber-physical system : A framework and evaluation. Industrial Management & Data Systems, 118(1), 96–125. https://doi.org/10.1108/imds-11–2016-0504.

    Google Scholar 

  • Xu, L. D., & Duan, L. (2019). Big data for cyber physical systems in Industry 4.0: A survey. Enterprise Information Systems, 13(2), 148–169.

    Google Scholar 

  • Zhang, L. (2014). A framework to specify big data driven complex cyber physical control systems. In Proceedings of IEEE International Conference on Information and Automation (ICIA), (Hailar, China, pp. 548–553).

    Google Scholar 

  • Zhang, L. (2014). Designing big data driven cyber physical systems based on AADL. In Proceedings of IEEE International Confernce on Systems, Man and Cybernetics (SMC), (San Diego, CA, US, pp. 3072–3077).

    Google Scholar 

  • Zhang, Y., Guo, Z., Lv, J., & Liu, Y. (2018). A framework for smart production-logistics systems based on CPS and industrial IoT. IEEE Transactions on Industrial Informatics, 14(9), 4019–4032. https://doi.org/10.1109/TII.2018.2845683.

    Article  Google Scholar 

  • Zhang, Y., Qiu, M., Tsai, C. W., Hassan, M. M., & Alamri, A. (2015a). Health-CPS: Healthcare cyber-physical system assisted by cloud and big data. IEEE Systems Journal, 11(1), 88–95.

    Article  Google Scholar 

  • Zhang, D., Zhao, J., Zhang, F., & He, T. (2015). Urban CPS: A cyber-physical system based on multi-source big infrastructure data for heterogeneous model integration. In Proceedings ACM/IEEE Sixth International Conference on Cyber-Physical Systems, (pp. 238–247).

    Google Scholar 

  • Zheng, P., Sang, Z., Zhong, R. Y., Liu, Y., Liu, C., Mubarok, K., … & Xu, X. (2018). Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives. Frontiers of Mechanical Engineering, 13(2), 137–150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amos Orenyi Bajeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abikoye, O.C. et al. (2021). Application of Internet of Thing and Cyber Physical System in Industry 4.0 Smart Manufacturing. In: Singh, K.K., Nayyar, A., Tanwar, S., Abouhawwash, M. (eds) Emergence of Cyber Physical System and IoT in Smart Automation and Robotics. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-66222-6_14

Download citation

Publish with us

Policies and ethics