Skip to main content

Recent Trends, Prospects, and Challenges of Nanobiosensors in Agriculture

  • Chapter
  • First Online:
Biosensors in Agriculture: Recent Trends and Future Perspectives

Part of the book series: Concepts and Strategies in Plant Sciences ((CSPS))

Abstract

Nanotechnology (NT) is an interdisciplinary scientific approach at the nanoscale which revolutionized nanobiosensors’ usage in agriculture. Agriculture is a diversified field that plays a self-sustaining role to promote the economic development of any country toward mankind. Agriculture requires nanotechnical interventions toward food processing, food safety, food quality or quality assurance, food security, disaster risk management, diagnosis, and prevention at the local and global levels. Nanobiosensors have immense potential to solve severe problems pertaining to agriculture. Nanobiotechnology (NBT) is a branch of NT at nano dimensions to create tools and techniques, and functional structures which open new applications toward agriculture and health. Agriculture is the major sector of national economy in developing countries. A recent advance in biosensor technology toward agriculture challenges is very challenging with the intervention of nanotechnology which would emerge to enhance crop productivity and sustainability and also improve real-time quality and food safety of livestock, and natural agricultural resources. In this book chapter, the commercial and futuristic nanobiosensors are highlighted to defend the challenges in the major sector of agriculture and bring out the implications of nanobiosensors design and development toward the improvement of crop productivity. Thus, nanobiosensors are playing a crucial role in sensing insecticides, herbicides, fertilizers, and pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agriopoulou S, Stamatelopoulou E, Varzakas T (2020) Advances in analysis and detection of major mycotoxins in foods. Foods. Apr 9(4):518

    Google Scholar 

  • Afonso AS, Perez-Lopez FRC, Mattoso LHC, Hernandez M (2013) Electrochemical detection of Salmonella using gold nanoparticles. Biosens Bioelectron 40(1):121–126

    Article  CAS  Google Scholar 

  • Bonel L, Vidal J, Duato P, Castillo J (2010) Ochratoxin A nanostructured electrochemical immunosensors based on polyclonal antibodies and gold nanoparticles coupled to the antigen. Anal Methods 2:335–341

    Article  CAS  Google Scholar 

  • Brock DA, Douglas TE, Queller DC, Strassmann JE (2011) Primitive agriculture in a social amoeba. Nature 469(7330):393–396

    Article  CAS  Google Scholar 

  • Chen J, Park B (2016) Recent advancements in nanobioassays and nanobiosensors for foodborne pathogenic bacteria detection. J Food Prot 79(6):1055–1069

    Google Scholar 

  • Courvalin P (2008) Predictable and unpredictable evolution of antibiotic resistance. J Intern Med 264:4–16

    Article  CAS  Google Scholar 

  • Eldin TAS, Elshoky HA, Ali MA (2014) Nanobiosensor based on gold nanoparticles probe for aflatoxin B1 detection in food. Int J Curr Microbiol App Sci 3(8):219–230

    Google Scholar 

  • Guan H, Zhang F, Yu J, Chi D (2012) The novel acetylcholinesterase biosensors based on liposome bioreactors-chitosan nanocomposites film for detection of organophosphates pesticides. Food Res Int 49(1):15–21

    Article  CAS  Google Scholar 

  • Haddaoui M, Raouafi N (2015) Chlortoluron-induced enzymatic activity inhibition in tyrosinase/ZnO NPs/ SPCE biosensor for the detection of ppb levels of herbicide. Sensors Actuators B Chem 219:171–178

    Article  CAS  Google Scholar 

  • Idowu F, Junaid K, Paul A, Gabriel O, Paul A, Sati N, Maryam M, Jarlath U (2010) Antimicrobial screening of commercial eggs and determination of tetracycline residue using two microbiological methods. Int J Poult Sci 9(10):959–962

    Article  Google Scholar 

  • Inbaraj BS, Chen BH (2016) Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. journal of food and drug analysis 24(1): 15–28

    Google Scholar 

  • Kim G, Park SB, Moon J, Lee S (2013) Detection of pathogenic Salmonella with nanobiosensors. Anal Methods 5:5717–5723

    Article  CAS  Google Scholar 

  • Landers TF, Cohen B, Wittum TE, Larson EL (2012) A review of antibiotic use in food animals: perspective, policy and potential. Public Health Reports January-February 127:1–22

    Google Scholar 

  • Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:122–129

    Article  Google Scholar 

  • Lopez MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E (2009) Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr. Issues Mol. Biol. 11, 13e46

    Google Scholar 

  • Masikini M, Mailu SN, Tsegaye A et al (2015) A fumonisins immunosensor based on polyanilino-carbon nanotubes doped with palladium telluride quantum dots. Sensors 15:529–546

    Article  Google Scholar 

  • McEwen SA, Fedorka-Cray PJ (2002) Antimicrobial use and resistance in animals. Clin Infect Dis 34(3):93–106

    Article  Google Scholar 

  • McGrath TF, Elliott CT, Fodey TL (2012) Biosensors for the analysis of microbiological and chemical contaminants in food. Anal Bioanal Chem 403:75–92

    Article  CAS  Google Scholar 

  • Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci. 1(10):414–419

    Google Scholar 

  • Mungroo NA, Neethirajan S (2014) Biosensors for the detection of antibiotics in poultry industry—a review. Biosensors. 4(4):472–93

    Article  Google Scholar 

  • Nehra A, Singh KP (2015) Current trends in nanomaterial embedded field effect transistor-based biosensor. Biosensors and Bioelectronics. 74:731–43

    Article  CAS  Google Scholar 

  • Norouzi P, Pirali-Hamedani M, Ganjal MR, Faridbod F (2010) A novel acetylcholinesterase biosensor for determination of monocrotophos using FFT continuous cyclic voltammetry. Int J Electrochem Sci 5:1434–1446

    CAS  Google Scholar 

  • Noruzi M (2016) Electrospun nanofibres in agriculture and the food industry: a review. Journal of the Science of Food and Agriculture. Nov; 96(14): 4663-78

    Google Scholar 

  • Nowak B, MĂĽffling T, Chaunchom S, Hartung J (2007) Salmonella contamination in pigs at slaughter and on the farm: a field study using an antibody ELISA test and a PCR technique. Int J Food Microbiol 115(3):259–267

    Article  CAS  Google Scholar 

  • Parker CO, Tothill IE (2009) Development of an electrochemical immunosensor for aflatoxin M (1) in milk with focus on matrix interference. Biosens Bioelectron 24(8):2452–2457

    Article  CAS  Google Scholar 

  • Parisi C, Vigani M, RodrĂ­guez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today. 10(2):124–7

    Article  CAS  Google Scholar 

  • Rai V, Acharya S, Dey N (2012) Implications of Nanobiosensors in Agriculture. J. Biomaterilas Nanobiotechnology 3:315–324

    Article  CAS  Google Scholar 

  • Sastry RK, Anshul S, Rao NH (2013) Nanotechnology in food processing sector-An assessment of emerging trends. Journal of Food Science and Technology. 50(5):831–41

    Article  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnology, Science and Applications. 7:31

    Article  Google Scholar 

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in Agricultural Diseases. J. Phytol. 2:83–92

    Google Scholar 

  • Singh RP, Choi JW, Tiwari A, Pandey AC (2014) Functional Nanomaterials for Multifarious Nanomedicine, in Biosensors Nanotechnology (eds A. Tiwari and A. P.F. Turner), Wiley, Inc., Hoboken, NJ, USA

    Google Scholar 

  • Singh RP (2016) Nanobiosensors: Potentiality towards Bioanalysis. J Bioanal Biomed 8:e143. https://doi.org/10.4172/1948-593X.1000e143

    Article  Google Scholar 

  • Singh RP (2017) Application of nanomaterials towards development of nanobiosensors and their utility in agriculture, Springer Publisher, New York, USA, Ch 14, pp 293-303 (2017). In book “Nanotechnology: An Agricultural Paradigm” Editors: Prasad, Ram, Kumar, Manoj, Kumar, Vivek (Eds.)

    Google Scholar 

  • Singh RP (2019) Nanocomposites: Recent Trends, Developments and Applications. CRC Press, November 15, 2018 Forthcoming, Reference-552, CRC Press, 2018. pp 552 chap 2, Advances in Nanostructured Composites: Volume 1: Carbon Nanotube and Graphene Composites. 1st Edition, Mahmood Aliofkhazraei

    Google Scholar 

  • Singh RP, Choi JW (2010) Bio-nanomaterials for versatile bio-molecules detection technology. Letter to Editors. Adv. Mat. Lett. 1(1):83–84

    Article  CAS  Google Scholar 

  • Song Y, Chen J, Wang LA (2015) Simple electrochemical biosensor based on AuNPs/MPS/Au electrode sensing layer for monitoring carbamate pesticides in real samples. J hazardous 304:103–109

    Article  Google Scholar 

  • Songa EA, Arotiba OA, Owino JH, Jahed N, Baker PG, Iwuoha EI (2009a) Electrochemical detection of glyphosate herbicide using horseradish peroxidase immobilized on sulfonated polymer matrix. Bioelectrochemistry 75(2):117–123

    Article  CAS  Google Scholar 

  • Songa EA, Somerset S, Waryo T, Baker PG, Iwuoha EI (2009b) Amperometric nanobiosensor for quantitative determination of glyphosate and glufosinate residues in corn samples. Pure Appl Chem 81(1):123

    Article  CAS  Google Scholar 

  • Songa EA, Waryo T, Jahed N, Baker PGL, Kgarebe B, Iwuoha EI (2009c) Electrochemical nanobiosensor for glyphosate herbicide and its metabolite. Electroanalysis 21(3–5):671–674

    Article  CAS  Google Scholar 

  • Turan E, Sahin F (2016) Molecularly imprinted biocompatible magnetic nanoparticles for specific recognition of Ochratoxin A. Sensors Actuators B Chem 227:668–676

    Article  CAS  Google Scholar 

  • Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosensors and Bioelectronics. 22(12):2848–53

    Article  CAS  Google Scholar 

  • Vimala V, Clarke SK, Urvinder Kaur S (2016) Pesticides detection using acetylcholinesterase nanobiosensor. Biosens J 5:1–4

    Google Scholar 

  • Viswanathan S, Wu L, Huang M, Ho J (2006) Electrochemical immunosensor for cholera toxin using liposomes and poly(3,4-ethylenedioxythiophene)-coated carbon nanotubes. Anal Chem 78(4):1115–1121

    Article  CAS  Google Scholar 

  • Wang J (2005) Nanomaterial-based amplified transduction of biomolecular interactions. Small 1(11):1036–1043

    Article  CAS  Google Scholar 

  • Wang Y, Alocijia EC (2015) Gold nanoparticle-labeled biosensor for rapid and sensitive detection of bacterial pathogens. J Biol Eng 9:16

    Article  Google Scholar 

  • Wu Y, Tang L, Huang L, Han Z, Wang J, Pan H (2014) A low detection limit penicillin biosensor based on single graphene nanosheets preadsorbed with hematein-ionic liquids-penicillinase. Mater Sci Eng C Mater Biol Appl 1(39):92–99

    Article  Google Scholar 

  • Xu X, Liu X, Li Y, Ying Y (2013) A simple and rapid optical biosensor for detection of aflatoxin B1 based on competitive dispersion of gold nanorods. Biosens Bioelectron 47:361–367

    Article  CAS  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu J, Lin ZP, (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv. Mater. Res, 79e82, 513e516

    Google Scholar 

  • Zhang S, Shan L, Tian Z, Zheng Y, Shi L et al (2008) Study of enzyme biosensor based on carbon nanotubes modified electrode for detection of pesticides residue. Chin Chem Lett 19:592–594

    Article  CAS  Google Scholar 

  • Zhao G, Wang H, Liu G (2015) Advances in biosensor-based instruments for pesticide residues rapid detection. Int J Electrochem Sci 10:9790–9807

    CAS  Google Scholar 

  • Zheng Z, Zhoub Y, Li X, Liua S, Tangb Z (2011) Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots. Biosens Bioelectron 26:3081–3085

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Dr. Ravindra Pratap Singh thanks IGNTU, Amarkantak, M.P. India for providing facilities to prepare this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra Pratap Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R.P. (2021). Recent Trends, Prospects, and Challenges of Nanobiosensors in Agriculture. In: Pudake, R.N., Jain, U., Kole, C. (eds) Biosensors in Agriculture: Recent Trends and Future Perspectives. Concepts and Strategies in Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-66165-6_1

Download citation

Publish with us

Policies and ethics