Skip to main content

Why Do We Need a Statistical Experiment Design?

  • Chapter
  • First Online:
Experimental Design and Reproducibility in Preclinical Animal Studies

Part of the book series: Laboratory Animal Science and Medicine ((LASM,volume 1))

  • 862 Accesses

Abstract

In order to develop new treatments for diseases, high-fidelity models are required (Russell WMS, Burch RL. (1959)) to advance our understanding to the stage where human trials can begin. We have to strike a harm/benefit balance, and these are now enshrined in the 3R’s principles of the European directive 2010/63/EU which is enacted in the laws of European countries. Good experimental design which will allow us to achieve this is therefore not only morally good but legally required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  1. Baker M. 1,500 scientists lift the lid on reproducibility. Nature. 2016;533:452–54.

    Article  CAS  Google Scholar 

  2. Bebarta V, Luyten D, Heard K. Emergency medicine animal research: does use of randomization and blinding affect the results? Acad Emer Med. 2003;10(6):684–7.

    Article  Google Scholar 

  3. Begley CG, Ioannidis JPA. Reproducibility in science: improving the standard for basic and preclinical research. Circ Res. 2015;116:116–26.

    Article  CAS  Google Scholar 

  4. Benjamin DJ, Berger JO, Johannesson M, Nosek BA, Wagenmakers EJ, Berk R, Bollen KA, Brembs B, Brown L, Camerer C, et al. Redefine statistical significance. Nat Hum Behav. 2018;2(1):6.

    Article  Google Scholar 

  5. Chia R, Achilli F, Festing MFW, Fisher EMC. The origins and uses of mouse outbred stocks. Nat Genet. 2005;37:1181–6.

    Article  CAS  Google Scholar 

  6. Chvedoff M, Clarke MR, Faccini JM, Irisarri E, Monro AM. Effects on mice of numbers of animals per cage: an 18-month study (preliminary results). Arch Toxicol Suppl. 1980;4:435–8.

    Article  CAS  Google Scholar 

  7. Crabbe JC, Wahlsten D, Dudek BC. Genetics of mouse behavior: interactions with laboratory environment. Science (New York, NY). 1999;284:1670–2.

    Google Scholar 

  8. Cumming G. Replication and p intervals: p values predict the future only vaguely, but confidence intervals do much better. Perspect Psychol Sci. 2008;3(4):286–300.

    Article  Google Scholar 

  9. Ellenberg J. How not to be wrong. The power of mathematical thinking. Penguin Books, USA, 2014.

    Google Scholar 

  10. Festing MFW. Principles: The need for better experimental design. Trends Pharmacol Sci. 2003;24:341–5.

    Article  CAS  Google Scholar 

  11. Festing MFW, Altman DG. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 2002;43(4):244–58.

    Article  CAS  Google Scholar 

  12. Freedman LP, Cockburn IM, Simcoe TS. The economics of reproducibility in preclinical research. PLoS Biol. 2015;13:e1002,165.

    Article  Google Scholar 

  13. Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions, vol. 4. John Wiley & Sons, USA, 2011.

    Google Scholar 

  14. Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. Syrcle’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:43.

    Article  Google Scholar 

  15. Ioannidis JPA. Why most published research findings are false. PLoS Med. 2005;2:e124. https://doi.org/10.1371/journal.pmed.0020124.

    Article  Google Scholar 

  16. Jay Jr GE. Variation in response of various mouse strains to hexobarbital (evipal). Proc Soc Exp Biol Med. 1955;90(2):378–80.

    Article  CAS  Google Scholar 

  17. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical bayes methods. Biostatistics 2007;8(1):118–27.

    Article  Google Scholar 

  18. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the arrive guidelines for reporting animal research. PLoS Biol. 2010;8:e1000,412.

    Article  Google Scholar 

  19. Macleod MR, Fisher M, O’Collins V, Sena ES, Dirnagl U, Bath PMW, Buchan A, Buchan A, van der Worp HB, Traystman RJ, Minematsu K, Donnan GA, Howells DW. Reprint: Good laboratory practice: preventing introduction of bias at the bench. J Cereb Blood Flow Metab. 2009;29:221–3.

    Article  Google Scholar 

  20. Macleod MR, Lawson McLean A, Kyriakopoulou A, Serghiou S, de Wilde A, Sherratt N, Hirst T, Hemblade R, Bahor Z, Nunes-Fonseca C, Potluru A, Thomson A, Baginskaite J, Baginskitae J, Egan K, Vesterinen H, Currie GL, Churilov L, Howells DW, Sena ES. Risk of bias in reports of in vivo research: a focus for improvement. PLoS Biol. 2015;13:e1002,273. https://doi.org/10.1371/journal.pbio.1002273

    Article  Google Scholar 

  21. Quackenbush J. Microarray data normalization and transformation. Nat Genet. 2002;32(Suppl):496–501.

    Article  CAS  Google Scholar 

  22. ter Riet G, Korevaar DA, Leenaars M, Sterk PJ, Van Noorden CJF, Bouter LM, Lutter R, Elferink RPO, Hooft L. Publication bias in laboratory animal research: a survey on magnitude, drivers, consequences and potential solutions. PloS One. 2012;7:e43,404. https://doi.org/10.1371/journal.pone.0043404

    Article  Google Scholar 

  23. Sackett DL, et al. Bias in analytic research. J Chron Dis. 1979;32:51–63.

    Article  CAS  Google Scholar 

  24. Simmons JP, Nelson LD, Simonsohn U. False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol Sci. 2011;22:1359–66.

    Article  Google Scholar 

  25. Sorzano COS, Tabas-Madrid D, Núñez F, Fernández-Criado C, Naranjo A. Sample size for pilot studies and precision driven experiments. 2017. arXiv preprint arXiv:170700222.

    Google Scholar 

  26. Sullivan LM, Weinberg J, Keaney JF. Common statistical pitfalls in basic science research. J Am Heart Assoc. 2016;5: e004142.

    Article  Google Scholar 

  27. Thompson SK. Sampling. John Wiley & Sons, USA, 2012.

    Book  Google Scholar 

  28. Zeng X, Zhang Y, Kwong JS, Zhang C, Li S, Sun F, Niu Y, Du L. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. J Evid Based Med. 2015;8(1):2–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Oscar Sánchez Sorzano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parkinson, M., Sorzano, C.O.S. (2021). Why Do We Need a Statistical Experiment Design?. In: Sánchez Morgado, J.M., Brønstad, A. (eds) Experimental Design and Reproducibility in Preclinical Animal Studies . Laboratory Animal Science and Medicine, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-66147-2_6

Download citation

Publish with us

Policies and ethics