Skip to main content

Microbiology and Microbiome

  • 436 Accesses

Part of the Laboratory Animal Science and Medicine book series (LASM,volume 1)

Abstract

A mammal harbours a vast number of microorganisms in the form of bacteria, viruses, protozoans, parasites, fungi and archaea, which is known as the microbiota. The animal host contains approximately 20,000 genes, while the microbiota contains more than 1 million genes. Therefore, many of the competences of a laboratory animal have arisen from the microbiota rather than the mammal genome. As there is substantial variation in composition between animals, animal units and commercial production sites and little information available on this, it is a challenge for experimental design, reproducibility and translatability of animal experiments. Some of the microorganisms are pathogens, i.e. they can induce spontaneous clinical disease in the animals, while others are commensals, i.e. their presence is latent. Traditionally, pathogens have been eradicated from so-called specific pathogen-free breeding colonies of research rodents to decrease mortality, disease incidence, inter-individual parameter variation and other forms of research interference. However, today it can also be argued that animals which have never been infected with pathogens have an under-stimulated immune system and, therefore, may be less translational compared to humans. Many of the commensals have been shown to be important for the induction of animal models, and variation in microbiota composition is responsible for a substantial part of the inter-individual variation in responses of many models and for different outcomes in different facilities. It is still a good principle that rodents for research only are bought from colonies bred behind a specific pathogen protecting barrier and that they are subjected to current health monitoring, which should be documented. However, it can also for individual studies be necessary to include a characterization of the microbiota, which has been made possible by modern sequencing techniques, which over the last decade have become more efficient and cheaper. Characterization can be done on a colony level, but eventually it can also be done on all animals in a specific study, which will allow the incorporation of the information in the data evaluation. It may also be important to ensure that specific bacteria needed for a proper model expression are present in the animals to be used. Before progressing from preclinical animal studies to clinical human studies, it might be considered wise to supplement the studies in SPF animals with animals infected with pathogens.

Keywords

  • Microbiota
  • Microbiome
  • Microbiology
  • Specific pathogen-free organisms
  • Animal experimentation
  • Germ-free
  • Laboratory animal science

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-66147-2_4
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-66147-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Norman JM, Handley SA, Virgin HW. Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities. Gastroenterology. 2014;146:1459–69. https://doi.org/10.1053/j.gastro.2014.02.001.

    CAS  CrossRef  PubMed  Google Scholar 

  2. Falk PG, Hooper LV, Midtvedt T, et al. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev. 1998;62:1157.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  3. Norin E, Midtvedt T. Intestinal microflora functions in laboratory mice claimed to harbor a “normal” intestinal microflora. Is the SPF concept running out of date? Anaerobe. 2010;16:311–3. https://doi.org/10.1016/j.anaerobe.2009.10.006.

    CrossRef  PubMed  Google Scholar 

  4. Nuttall George HF, Thierfelder H. Thierisches Leben ohne Bakterien im Verdauungskanal. Hoppe Seylers Z Physiol Chem. 1897;23(3):231–5.

    CrossRef  Google Scholar 

  5. Smith T. Some bacteriological and environmental factors in the pneumonias of lower animals with special reference to the guinea-pig. J Med Res. 1913;29:291–U227.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tyzzer EE. A fatal disease of the Japanese waltzing mouse caused by a spore-bearing bacillus (Bacillus piliformis N.Sp.). J Med Res. 1917;37:307–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Glimstedt G. Metabolism of bacteria free animals. I General methods. Skand Arch Physiol. 1936;73:48–62. https://doi.org/10.1111/j.1748-1716.1936.tb01451.x.

    CrossRef  Google Scholar 

  8. Reyniers JA, Trexler PC, Ervin RF. Rearing germ-free albino rats. Lobund Rep. 1946:1–84. 1946/11/01.

    Google Scholar 

  9. Foster H. Large scale production of rats free of commonly occurring pathogens and parasites. Proc Anim Care Panel. 1958;8:92–100.

    Google Scholar 

  10. Schaedler RW, DUBOS R, Costello R. The development of the bacterial flora in the gastrointestinal tract of mice. J Exp Med. 1965;122:59–66.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  11. Schaedler RW, DUBS R, Costello R. Association of germfree mice with bacteria isolated from normal mice. J Exp Med. 1965;122:77–82.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  12. Barthold SW, Coleman GL, BHATT PN, et al. The etiology of transmissible murine colonic hyperplasia. Lab Anim Sci. 1976;26:889–94.

    CAS  PubMed  Google Scholar 

  13. Dewhirst FE, Chien CC, Paster BJ, et al. Phylogeny of the defined murine microbiota: altered Schaedler flora. Appl Environ Microbiol. 1999;65:3287–92.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  14. Bleich A, Hansen AK. Time to include the gut microbiota in the hygienic standardisation of laboratory rodents. Comp Immunol Microbiol Infect Dis. 2012;35:81–92. DOI: S0147-9571(11)00125-1 [pii];10.1016/j.cimid.2011.12.006 [doi]

    PubMed  CrossRef  Google Scholar 

  15. Beura LK, Hamilton SE, Bi K, et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature. 2016;532:512–6. 2016/04/21. https://doi.org/10.1038/nature17655.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Reese TA, Bi K, Kambal A, et al. Sequential infection with common pathogens promotes human-like immune gene expression and altered vaccine response. Cell Host Microbe. 2016;19:713–9. Article. https://doi.org/10.1016/j.chom.2016.04.003.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Masopust D, Sivula CP, Jameson SC. Of mice, dirty mice, and men: using mice to understand human immunology. J Immunol. 2017;199:383–8. https://doi.org/10.4049/jimmunol.1700453.

    CAS  CrossRef  PubMed  Google Scholar 

  18. Dammann P, Hilken G, Hueber B, et al. Infectious microorganisms in mice (Mus musculus) purchased from commercial pet shops in Germany. Lab Anim. 2011;45:271–5. https://doi.org/10.1258/la.2011.010183.

    CAS  CrossRef  PubMed  Google Scholar 

  19. Schoondermark-van de Ven EM, Philipse-Bergmann IM, van der Logt JT. Prevalence of naturally occurring viral infections, Mycoplasma pulmonis and Clostridium piliforme in laboratory rodents in Western Europe screened from 2000 to 2003. Lab Anim. 2006;40:137–43. 2006/04/08. https://doi.org/10.1258/002367706776319114.

    CAS  CrossRef  PubMed  Google Scholar 

  20. Rodrigues DM, Moreira JCD, Lancellotti M, et al. Murine norovirus infection in Brazilian animal facilities. Exp Anim. 2017;66:115–24. Article

    CAS  PubMed  CrossRef  Google Scholar 

  21. Parker SE, Malone S, Bunte RM, et al. Infectious diseases in wild mice (Mus musculus) collected on and around the University of Pennsylvania (Philadelphia) Campus. Comp Med. 2009;59:424–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Davies RH, Wray C. Mice as carriers of Salmonella enteritidis on persistently infected poultry units. Vet Rec. 1995;137:337–41. 1995/09/30

    CAS  PubMed  CrossRef  Google Scholar 

  23. Taylor JD, Stephens CP, Duncan RG, et al. Polyarthritis in wild mice (Mus musculus) caused by Streptobacillus moniliformis. Aust Vet J. 1994;71:143–5. 1994/05/01

    CAS  PubMed  CrossRef  Google Scholar 

  24. Pritchett-Corning KR, Cosentino J, Clifford CB. Contemporary prevalence of infectious agents in laboratory mice and rats. Lab Anim. 2009;43:165–73.

    CAS  PubMed  CrossRef  Google Scholar 

  25. Mahler Convenor M, Berard M, Feinstein R, et al. FELASA recommendations for the health monitoring of mouse, rat, hamster, guinea pig and rabbit colonies in breeding and experimental units. Lab Anim. 2014;48:178–92. 2014/02/06. https://doi.org/10.1177/0023677213516312.

    CAS  CrossRef  PubMed  Google Scholar 

  26. Hansen AK, Skovgaard-Jensen HJ, Thomsen P, et al. Rederivation of rat colonies seropositive for Bacillus piliformis and the subsequent screening for antibodies [published erratum appears in Lab Anim Sci 1993 Feb; 43(1): 114]. Lab Anim Sci. 1992;42:444–8.

    CAS  PubMed  Google Scholar 

  27. Moler TL, Donahue SE, Anderson GB. Simple technique for non-surgical embryo transfer in mice. Lab Anim Sci. 1979;29:353–6. Note

    CAS  PubMed  Google Scholar 

  28. El-Gayar M, Gauly M, Holtz W. One-step dilution of open-pulled-straw (OPS)-vitrified mouse blastocysts in sucrose-free medium. Cryobiology. 2008;57:191–4. https://doi.org/10.1016/j.cryobiol.2008.07.012.

    CAS  CrossRef  PubMed  Google Scholar 

  29. Jin B, Mochida K, Ogura A, et al. Equilibrium vitrification of mouse embryos. Biol Reprod. 2010;82:444–50. https://doi.org/10.1095/biolreprod.109.077685.

    CAS  CrossRef  PubMed  Google Scholar 

  30. Easterbrook JD, Kaplan JB, Glass GE, et al. A survey of rodent-borne pathogens carried by wild-caught Norway rats: a potential threat to laboratory rodent colonies. Lab Anim. 2008;42:92–8.

    CAS  PubMed  CrossRef  Google Scholar 

  31. Nakai N, Kawaguchi C, Nawa K, et al. Detection and elimination of contaminating microorganisms in transplantable tumors and cell lines. Exp Anim. 2000;49:309–13.

    CAS  PubMed  CrossRef  Google Scholar 

  32. Rehbinder C, Baneux P, Forbes D, et al. FELASA recommendations for the health monitoring of breeding colonies and experimental units of cats, dogs and pigs – report of the Federation of European Laboratory Animal Science Associations (FELASA) Working Group on Animal Health. Lab Anim. 1998;32:1–17.

    CAS  PubMed  CrossRef  Google Scholar 

  33. Weber H, Berge E, FInch J, et al. Health monitoring of non-human primate colonies. Recommendations of the Federation of European Laboratory Animal Science Associations (FELASA) Working Group on non-human primate health accepted by the FELASA Board of Management, 21 November 1998. Lab Anim. 1999;33(Suppl 1):S1–18.

    Google Scholar 

  34. Rehbinder C, Alenius S, Bures J, et al. FELASA recommendations for the health monitoring of experimental units of calves, sheep and goats Report of the federation of European Laboratory Animal Science Associations (FELASA) Working Group on Animal Health. Lab Anim. 2000;34:329–50.

    CAS  PubMed  CrossRef  Google Scholar 

  35. Hansen AK. Statistical aspects of health monitoring of laboratory animal colonies. Scand J Lab Anim Sci. 1993;20:11–4.

    Google Scholar 

  36. Hayashimoto N, Morita H, Ishida T, et al. Current microbiological status of laboratory mice and rats in experimental facilities in Japan. Exp Anim. 2013;62:41–8.

    CAS  PubMed  CrossRef  Google Scholar 

  37. Manjunath S, Kulkarni PG, Nagavelu K, et al. Sero-prevalence of rodent pathogens in India. PLoS One. 2015;10:e0131706. https://doi.org/10.1371/journal.pone.0131706.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  38. McInnes EF, Rasmussen L, Fung P, et al. Prevalence of viral, bacterial and parasitological diseases in rats and mice used in research environments in Australasia over a 5-y period. Lab Anim (NY). 2011;40:341–50. https://doi.org/10.1038/laban1111-341.

    CrossRef  Google Scholar 

  39. Knust B, Stroher U, Edison L, et al. Lymphocytic choriomeningitis virus in employees and mice at multipremises feeder-rodent operation, United States, 2012. Emerg Infect Dis. 2014;20:240–7. Article. https://doi.org/10.3201/eid2002.130860.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  40. Hansen AK, Andersen HV, Svendsen O. Studies on the diagnosis of Tyzzer’s disease in laboratory rat colonies with antibodies against Bacillus piliformis (Clostridium piliforme). Lab Anim Sci. 1994;44:424–9.

    CAS  PubMed  Google Scholar 

  41. Hansen AK, Svendsen O, Mollegaard-Hansen KE. Epidemiological studies of Bacillus piliformis infection and Tyzzer’s disease in laboratory rats. Z Versuchstierkd. 1990;33:163–9.

    CAS  PubMed  Google Scholar 

  42. Hansen AK, Nielsen DS. Molecular biology based methods for microbiota characterization. In: Hansen AK, Nielsen DS, editors. Handbook of laboratory animal bacteriology. 2nd ed. Boca Raton: CRC Press; 2014. p. 93–104.

    CrossRef  Google Scholar 

  43. Hansen AK. The aerobic bacterial flora of laboratory rats from a Danish breeding centre. Scand J Lab Anim Sci. 1992;19:59–68.

    Google Scholar 

  44. Dahl K, Kirkeby S, d’Apice AJF, et al. The bacterial flora of alpha-gal knock out mice express the alpha-gal epitope comparable to wild type mice. Transpl Immunol. 2005;14:9–16.

    CAS  PubMed  CrossRef  Google Scholar 

  45. Hansen AK, Ling F, Kaas A, et al. Diabetes preventive gluten-free diet decreases the number of caecal bacteria in non-obese diabetic mice. Diab Metab Res Rev. 2006;22:220–5.

    CAS  CrossRef  Google Scholar 

  46. Vaahtovuo J, Erkki E, Paavo T. Comparison of cellular fatty acid profiles of the microbiota in different gut regions of BALB/c and C57BL/6J mice. Antonie Van Leeuwenhoek. 2005;88:67–74.

    CrossRef  CAS  Google Scholar 

  47. Hufeldt MR, Nielsen DS, Vogensen FK, et al. Family relationship of female breeders reduce the systematic inter-individual variation in the gut microbiota of inbred laboratory mice. Lab Anim. 2010;44:283–9.

    CAS  PubMed  CrossRef  Google Scholar 

  48. Bergstrom A, Licht TR, Wilcks A, et al. Introducing GUt low-density array (GULDA): a validated approach for qPCR-based intestinal microbial community analysis. FEMS Microbiol Lett. 2012;337:38–47. https://doi.org/10.1111/1574-6968.12004.

    CAS  CrossRef  PubMed  Google Scholar 

  49. Pang W, Vogensen FK, Nielsen DS, et al. Faecal and caecal microbiota profiles of mice do not cluster in the same way. Lab Anim. 2012;46:231–6.

    CAS  PubMed  CrossRef  Google Scholar 

  50. Aagaard K, Petrosino J, Keitel W, et al. The human microbiome project strategy for comprehensive sampling of the human microbiome and why it matters. FASEB J. 2013;27:1012–22. https://doi.org/10.1096/fj.12-220806.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  51. Lundberg R, Clausen SK, Pang W, et al. Gastrointestinal microbiota and local inflammation during Oxazolone-induced Dermatitis in BALB/cA Mice. Comp Med. 2012;62:371–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mao DP, Zhou Q, Chen CY, et al. Coverage evaluation of universal bacterial primers using the metagenomic datasets. BMC Microbiol. 2012;12:66. https://doi.org/10.1186/1471-2180-12-66.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  53. Nielsen DS, Moller PL, Rosenfeldt V, et al. Case study of the distribution of mucosa-associated Bifidobacterium species, Lactobacillus species, and other lactic acid bacteria in the human colon. Appl Environ Microbiol. 2003;69:7545–8. https://doi.org/10.1128/Aem.69312.7545-7548.2003.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  54. Krych L, Hansen CH, Hansen AK, et al. Quantitatively different, yet qualitatively alike: a meta-analysis of the mouse core gut microbiome with a view towards the human gut microbiome. PLoS One. 2013;8:e62578. 2013/05/10. https://doi.org/10.1371/journal.pone.0062578.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  55. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Meth. 2013;10:996. https://doi.org/10.1038/nmeth.2604.

    CAS  CrossRef  Google Scholar 

  56. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8. https://doi.org/10.1038/nmeth.2604.

    CAS  CrossRef  PubMed  Google Scholar 

  57. Langille MGI, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31:814. https://doi.org/10.1038/Nbt.2676.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  58. Lozupone C, Hamady M, Knight R. UniFrac--an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinform. 2006;7:371.

    CrossRef  CAS  Google Scholar 

  59. Hansen CH, Frokiaer H, Christensen AG, et al. Dietary xylooligosaccharide downregulates IFN-gamma and the low-grade inflammatory cytokine IL-1beta systemically in mice. J Nutr. 2013;143:533–40. 2013/02/22. https://doi.org/10.3945/jn.112.172361.

    CAS  CrossRef  PubMed  Google Scholar 

  60. De Angelis M, Piccolo M, Vannini L, et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One. 2013;8:e76993. 2013/10/17. https://doi.org/10.1371/journal.pone.0076993.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  61. Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6. https://doi.org/10.1038/nmeth.f.303.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  62. Bleich A, Mahler M. Environment as a critical factor for the pathogenesis and outcome of gastrointestinal disease: experimental and human inflammatory bowel disease and helicobacter-induced gastritis. Pathobiology. 2005;72:293–307. DOI: PAT2005072006293 [pii];10.1159/000091327 [doi]

    CAS  PubMed  CrossRef  Google Scholar 

  63. Itoh K, Narushima S. Intestinal flora of animal models of human diseases as an environmental factor. Curr Issues Intest Microbiol. 2005;6:9–15.

    CAS  PubMed  Google Scholar 

  64. Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134:577–94. DOI: S0016-5085(07)02157-9 [pii];10.1053/j.gastro.2007.11.059 [doi]

    CAS  PubMed  CrossRef  Google Scholar 

  65. Hufeldt MR, Nielsen DS, Vogensen FK, et al. Variation in the gut microbiota of laboratory mice is related to both genetic and environmental factors. Comp Med. 2010;60:336–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rasmussen TS, de Vries L, Kot W, et al. Mouse vendor influence on the bacterial and viral gut composition exceeds the effect of diet. Viruses. 2019;11(5):435. https://doi.org/10.3390/v11050435.

    CAS  CrossRef  PubMed Central  Google Scholar 

  67. Alexander AD, Orcutt RP, Henry JC, et al. Quantitative PCR assays for mouse enteric flora reveal strain-dependent differences in composition that are influenced by the microenvironment. Mamm Genome. 2006;17:1093–104. Article. https://doi.org/10.1007/s00335-006-0063-1.

    CAS  CrossRef  Google Scholar 

  68. Ericsson AC, Davis JW, Spollen W, et al. Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice. Plos One. 2015;10:19. Article. https://doi.org/10.1371/journal.pone.0116704.

    CAS  CrossRef  Google Scholar 

  69. Ellekilde M, Krych L, Hansen CH, et al. Characterization of the gut microbiota in leptin deficient obese mice – correlation to inflammatory and diabetic parameters. Res Vet Sci. 2014;96:241–50. https://doi.org/10.1016/j.rvsc.2014.01.007.

    CAS  CrossRef  PubMed  Google Scholar 

  70. Rasmussen TS, de Vries L, Kot W, et al. Mouse vendor influence on the bacterial and viral gut composition exceeds the effect of diet. Viruses. 2019;11:588160. 2019/05/16. https://doi.org/10.3390/v11050435.

    CAS  CrossRef  Google Scholar 

  71. Scher JU, Sczesnak A, Longman RS, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife. 2013;2:e01202. https://doi.org/10.7554/eLife.01202.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  72. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137:1716–24. https://doi.org/10.1053/j.gastro.2009.08.042.

    CAS  CrossRef  PubMed  Google Scholar 

  73. Ubeda C, Taur Y, Jenq RR, et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest. 2010;120:4332–41. DOI: 43918 [pii];10.1172/JCI43918 [doi]

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  74. Antonopoulos DA, Huse SM, Morrison HG, et al. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun. 2009;77:2367–75. https://doi.org/10.1128/IAI.01520-08.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  75. Wilson KH, Brown RS, Andersen GL, et al. Comparison of fecal biota from specific pathogen free and feral mice. Anaerobe. 2006;12:249–53. DOI: S1075-9964(06)00071-0 [pii];10.1016/j.anaerobe.2006.09.002 [doi]

    CAS  PubMed  CrossRef  Google Scholar 

  76. Ley RE, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102:11070–5.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  77. Hansen CH, Krych L, Nielsen DS, et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia. 2012;55:2285–94. Article. https://doi.org/10.1007/s00125-012-2564-7.

    CAS  CrossRef  PubMed  Google Scholar 

  78. Walk ST, Blum AM, Ewing SAS, et al. Alteration of the murine gut microbiota during infection with the parasitic helminth heligmosomoides polygyrus. Inflamm Bowel Dis. 2010;16:1841–9. https://doi.org/10.1002/ibd.21299.

    CrossRef  PubMed  Google Scholar 

  79. Hildebrand F, Nguyen TL, Brinkman B, et al. Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol. 2013;14:R4. 2013/01/26. https://doi.org/10.1186/gb-2013-14-1-r4.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  80. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60. https://doi.org/10.1038/nature11450.

    CAS  CrossRef  PubMed  Google Scholar 

  81. Gollwitzer ES, Saglani S, Trompette A, et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med. 2014;20:642–7. https://doi.org/10.1038/nm.3568.

    CAS  CrossRef  PubMed  Google Scholar 

  82. Buve A, Jespers V, Crucitti T, et al. The vaginal microbiota and susceptibility to HIV. AIDS. 2014;28:2333–44.

    PubMed  CrossRef  Google Scholar 

  83. The_human_microbiome_project. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14. https://doi.org/10.1038/nature11234. http://www.nature.com/nature/journal/v486/n7402/abs/nature11234.html#supplementary-information

    CAS  CrossRef  Google Scholar 

  84. Grice EA, Kong HH, Conlan S, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324:1190–2. https://doi.org/10.1126/science.1171700.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  85. Scharschmidt TC, List K, Grice EA, et al. Matriptase-deficient mice exhibit ichthyotic skin with a selective shift in skin microbiota. J Invest Dermatol. 2009;129:2435–42. https://doi.org/10.1038/jid.2009.104.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  86. Whyte W, Lidwell OM, Lowbury EJ, et al. Suggested bacteriological standards for air in ultraclean operating rooms. J Hosp Infect. 1983;4:133–9.

    CAS  PubMed  CrossRef  Google Scholar 

  87. Zhang CH, Zhang MH, Wang SY, et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 2010;4:232–41.

    CAS  PubMed  CrossRef  Google Scholar 

  88. Hauschild T, Slizewski P, Masiewicz P. Species distribution of staphylococci from small wild mammals. Syst Appl Microbiol. 2010;33:457–60. 2010/10/26. https://doi.org/10.1016/j.syapm.2010.08.007.

    CAS  CrossRef  PubMed  Google Scholar 

  89. Rosshart SP, Vassallo BG, Angeletti D, et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell. 2017;171:1015-1028 e1013. 2017/10/24. https://doi.org/10.1016/j.cell.2017.09.016.

    CAS  CrossRef  Google Scholar 

  90. Itoh K, Mitsuoka T, Sudo K, et al. Comparison of fecal flora of mice based upon different strains and different housing conditions. Z Versuchstierkd. 1983;25:135–46.

    CAS  PubMed  Google Scholar 

  91. Buschard K, Pedersen C, Hansen SV, et al. Anti-diabetogenic effect of fusidic acid in diabetes prone Bb rats. Autoimmunity. 1992;14:101–4.

    CAS  PubMed  CrossRef  Google Scholar 

  92. Bech-Nielsen GV, Hansen CH, Hufeldt MR, et al. Manipulation of the gut microbiota in C57BL/6 mice changes glucose tolerance without affecting weight development and gut mucosal immunity. Res Vet Sci. 2012;92:501–8.

    CAS  PubMed  CrossRef  Google Scholar 

  93. Membrez M, Blancher F, Jaquet M, et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J. 2008;22:2416–26.

    CAS  PubMed  CrossRef  Google Scholar 

  94. Zackular JP, Baxter NT, Iverson KD, et al. The gut microbiome modulates colon tumorigenesis. MBio. 2013;4:e00692–13. https://doi.org/10.1128/mBio.00692-13.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  95. Klimesova K, Kverka M, Zakostelska Z, et al. Altered gut microbiota promotes colitis-associated cancer in IL-1 receptor-associated kinase M-deficient mice. Inflamm Bowel Dis. 2013;19:1266–77. 2013/04/10. https://doi.org/10.1097/MIB.0b013e318281330a.

    CrossRef  PubMed  Google Scholar 

  96. Ericsson AC, Akter S, Hanson MM, et al. Differential susceptibility to colorectal cancer due to naturally occurring gut microbiota. Oncotarget. 2015;6:33689–704. Article. https://doi.org/10.18632/oncotarget.5604.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  97. Zachariassen LF, Krych L, Engkilde K, et al. Sensitivity to oxazolone induced dermatitis is transferable with gut microbiota in mice. Sci Rep. 2017;7:44385. Article. https://doi.org/10.1038/srep44385. http://www.nature.com/articles/srep44385#supplementary-information

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  98. Sellon RK, Tonkonogy S, Schultz M, et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun. 1998;66:5224–31.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  99. Pyndt Jorgensen B, Hansen JT, Krych L, et al. A possible link between food and mood: dietary impact on gut microbiota and behavior in BALB/c mice. PLoS One. 2014;9:e103398. 2014/08/19. https://doi.org/10.1371/journal.pone.0103398.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  100. Jorgensen BP, Krych L, Pedersen TB, et al. Investigating the long-term effect of subchronic phencyclidine-treatment on novel object recognition and the association between the gut microbiota and behavior in the animal model of schizophrenia. Physiol Behav. 2015;141:32–9. Article. https://doi.org/10.1016/j.physbeh.2014.12.042.

    CAS  CrossRef  Google Scholar 

  101. Holmes E, Nicholson J. Variation in gut microbiota strongly influences individual rodent phenotypes. Toxicol Sci. 2005;87:1–2. Editorial Material. https://doi.org/10.1093/toxsci/kfi259.

    CAS  CrossRef  PubMed  Google Scholar 

  102. Quigley EMM. Microbiota-brain-gut axis and neurodegenerative diseases. Curr Neurol Neurosci Rep. 2017;17:9. Review. https://doi.org/10.1007/s11910-017-0802-6.

    CAS  CrossRef  Google Scholar 

  103. Bercik P, Denou E, Collins J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141:599-609.e593. https://doi.org/10.1053/j.gastro.2011.04.052.

    CAS  CrossRef  Google Scholar 

  104. Engkilde K, Buschard K, Hansen AK, et al. Prevention of diabetes in NOD mice by repeated exposures to a contact allergen inducing a sub-clinical dermatitis. PLoS One. 2010;5:e10591.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  105. Stepankova R, Powrie F, Kofronova O, et al. Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RB(high) CD4+ T cells. Inflamm Bowel Dis. 2007;13:1202–11.

    PubMed  CrossRef  Google Scholar 

  106. Wu HJ, Ivanov II, Darce J, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32:815–27. https://doi.org/10.1016/j.immuni.2010.06.001.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  107. Kriegel MA, Sefik E, Hill JA, et al. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci USA. 2011;108:11548–53. DOI: 1108924108 [pii];10.1073/pnas.1108924108 [doi]

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  108. Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139:485–98. DOI: S0092-8674(09)01248-3 [pii];10.1016/j.cell.2009.09.033 [doi]

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  109. Garland CD, Lee A, Dickson MR. Segmented filamentous bacteria in the rodent small intestine: their colonization of growing animals and possible role in host resistance toSalmonella. Microb Ecol. 1982;8:181–90.

    CAS  PubMed  CrossRef  Google Scholar 

  110. Balish E, Warner T. Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. Am J Pathol. 2002;160:2253–7.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  111. Kim SC, Tonkonogy SL, Albright CA, et al. Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology. 2005;128:891–906. DOI: S0016508505001782 [pii]

    CAS  PubMed  CrossRef  Google Scholar 

  112. Martin R, Chain F, Miquel S, et al. The commensal bacterium faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflamm Bowel Dis. 2014;20:417–30. https://doi.org/10.1097/01.mib.0000440815.76627.64.

    CrossRef  PubMed  Google Scholar 

  113. Rosique RM, Bermudez-Humaran LG, Chain F, et al. Protective and curative effect of faecalibacterium prausnitzii in a chronic DNBS-induced murine colitis. Gastroenterology. 2012;142:S392.

    CrossRef  Google Scholar 

  114. Zhang M, Qiu X, Zhang H, et al. Faecalibacterium prausnitzii inhibits interleukin-17 to ameliorate colorectal colitis in rats. PLoS One. 2014;9 https://doi.org/10.1371/journal.pone.0109146.

  115. Paturi G, Mandimika T, Butts CA, et al. Influence of dietary blueberry and broccoli on cecal microbiota activity and colon morphology in mdr1a(-/-) mice, a model of inflammatory bowel diseases. Nutrition. 2012;28:324–30. https://doi.org/10.1016/j.nut.2011.07.018.

    CAS  CrossRef  PubMed  Google Scholar 

  116. Carlsson AH, Yakymenko O, Olivier I, et al. Faecalibacterium prausnitzii supernatant improves intestinal barrier function in mice DSS colitis. Scand J Gastroenterol. 2013;48:1136–44. https://doi.org/10.3109/00365521.2013.828773.

    CAS  CrossRef  PubMed  Google Scholar 

  117. Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA. 2011;108(38):16050.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  118. Schultz M, Veltkamp C, Dieleman LA, et al. Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice. Inflamm Bowel Dis. 2002;8:71–80.

    PubMed  CrossRef  Google Scholar 

  119. Madsen K, Cornish A, Soper P, et al. Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology. 2001;121:580–91. DOI: S0016508501903269 [pii]

    CAS  PubMed  CrossRef  Google Scholar 

  120. Madsen KL, Doyle JS, Jewell LD, et al. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology. 1999;116:1107–14. DOI: S0016508599004436 [pii]

    CAS  PubMed  CrossRef  Google Scholar 

  121. McCarthy J, O’Mahony L, O’Callaghan L, et al. Double blind, placebo controlled trial of two probiotic strains in interleukin 10 knockout mice and mechanistic link with cytokine balance. Gut. 2003;52:975–80.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  122. Schwarzer M, Srutkova D, Schabussova I, et al. Neonatal colonization of germ-free mice with Bifidobacterium longum prevents allergic sensitization to major birch pollen allergen Bet v 1. Vaccine. 2013;31:5405–12. Article. https://doi.org/10.1016/j.vaccine.2013.09.014.

    CAS  CrossRef  PubMed  Google Scholar 

  123. Lam V, Su J, Koprowski S, et al. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J. 2012;26:1727–35. 2012/01/17. https://doi.org/10.1096/fj.11-197921.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  124. Rath HC, Wilson KH, Sartor RB. Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. Infect Immun. 1999;67:2969–74.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  125. Nakano V, Gomes DA, Arantes RM, et al. Evaluation of the pathogenicity of the Bacteroides fragilis toxin gene subtypes in gnotobiotic mice. Curr Microbiol. 2006;53:113–7. Article. https://doi.org/10.1007/s00284-005-0321-6.

    CAS  CrossRef  PubMed  Google Scholar 

  126. Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15:1016–22. Article. https://doi.org/10.1038/nm.2015.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  127. Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155:1451–63. 2013/12/10. https://doi.org/10.1016/j.cell.2013.11.024.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  128. Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453:620–5. https://doi.org/10.1038/nature07008. http://www.nature.com/nature/journal/v453/n7195/suppinfo/nature07008_S1.html

    CAS  CrossRef  PubMed  Google Scholar 

  129. Brinkman BM, Becker A, Ayiseh RB, et al. Gut microbiota affects sensitivity to acute DSS-induced colitis independently of host genotype. Inflamm Bowel Dis. 2013;19:2560–7. Research Support, Non-U.S. Gov’t. https://doi.org/10.1097/MIB.0b013e3182a8759a.

    CrossRef  PubMed  Google Scholar 

  130. Bangsgaard Bendtsen KM, Krych L, Sørensen DB, et al. Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse. PLoS One. 2012;7:e46231.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  131. Naseribafrouei A, Hestad K, Avershina E, et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil. 2014;26:1155–62. Article. https://doi.org/10.1111/nmo.12378.

    CAS  CrossRef  PubMed  Google Scholar 

  132. Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110:9066–71. https://doi.org/10.1073/pnas.1219451110.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  133. Marietta EV, Gomez AM, Yeoman C, et al. Low incidence of spontaneous type 1 diabetes in non-obese diabetic mice raised on gluten-free diets is associated with changes in the intestinal microbiome. PLoS One. 2013;8:e78687. Article. https://doi.org/10.1371/journal.pone.0078687.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  134. Hanninen A, Toivonen R, Poysti S, et al. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut. 2018;67:1445–53. https://doi.org/10.1136/gutjnl-2017-314508.

    CAS  CrossRef  PubMed  Google Scholar 

  135. Russell SL, Gold MJ, Hartmann M, et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 2012;13:440–7. Article. https://doi.org/10.1038/embor.2012.32.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  136. Ganesh BP, Klopfleisch R, Loh G, et al. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS One. 2013;8:e74963. Article. https://doi.org/10.1371/journal.pone.0074963.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  137. Kang CS, Ban M, Choi EJ, et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS One. 2013;8:e76520. Article. https://doi.org/10.1371/journal.pone.0076520.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  138. Bhatt PN, Jacoby RO. Mousepox in inbred mice innately resistant or susceptible to lethal infection with ectromelia virus. III. Experimental transmission of infection and derivation of virus-free progeny from previously infected dams. Lab Anim Sci. 1987;37:23–7.

    CAS  PubMed  Google Scholar 

  139. Jacoby RO, BHATT PN. Mousepox in inbred mice innately resistant or susceptible to lethal infection with ectromelia virus. II Pathogenesis. Lab Anim Sci. 1987;37:16–22.

    CAS  PubMed  Google Scholar 

  140. Broderson JR, Murphy FA, Hierholzer JC. Lethal enteritis in infant mice caused by mouse hepatitis virus. Lab Anim Sci. 1976;26:824.

    CAS  PubMed  Google Scholar 

  141. Percy DH, Barta JR. Spontaneous and experimental infections in scid and scid/beige mice. Lab Anim Sci. 1993;43:127–32.

    CAS  PubMed  Google Scholar 

  142. Sebesteny A, Hill AC. Hepatitis and brain lesions due to mouse hepatitis virus accompanied by wasting in nude mice. Lab Anim. 1974;8:317–26.

    CAS  PubMed  CrossRef  Google Scholar 

  143. Hansen AK. Health status and health monitoring. In: Hau J, Schapiro SJ, editors. Handbook of laboratory animal science. 3rd ed. Boca Raton: CRC Press; 2010. p. 251–306.

    Google Scholar 

  144. Graham JE, Schoeb TR. Mycoplasma pulmonis in rats. J Exo Pet Med. 2011;20:270–6. https://doi.org/10.1053/j.jepm.2011.07.004.

    CrossRef  Google Scholar 

  145. Detmer A, Hansen AK, Dieperink H, et al. Xylose-positive staphylococci as a cause of respiratory disease in immunosuppressed rats. Scand J Lab Anim Sci. 1991;18:13–8.

    Google Scholar 

  146. Tvedten HW, Whitehai CK, Langham RF. Influence of vitamins-A and E on gnotobiotic and conventionally maintained rats exposed to mycoplasma-pulmonis. J Am Vet Med Assoc. 1973;163:605–12.

    CAS  PubMed  Google Scholar 

  147. Oldstone MB. Anatomy of viral persistence. PLoS Pathog. 2009;5:e1000523. 2009/08/04. https://doi.org/10.1371/journal.ppat.1000523.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  148. Toolan HW. Lack of Oncogenic Effect of the H-Viruses for Hamsters. Nature. 1967;214:1036. https://doi.org/10.1038/2141036a0.

    CAS  CrossRef  PubMed  Google Scholar 

  149. Toolan HW, Rhode SL, Gierthy JF. Inhibition of 7,12-Dimethylbenz(a)anthracene-induced tumors in Syrian hamsters by prior infection with H-1 parvovirus. Cancer Res. 1982;42:2552–5.

    CAS  PubMed  Google Scholar 

  150. Nicklas W, Kraft V, Meyer B. Contamination of transplantable tumors, cell lines, and monoclonal antibodies with rodent viruses. Lab Anim Sci. 1993;43:296–300.

    CAS  PubMed  Google Scholar 

  151. Tao L, Reese TA. Making mouse models that reflect human immune Responses. Trends Immunol. 2017;38:181–93. 2017/02/06. https://doi.org/10.1016/j.it.2016.12.007.

    CAS  CrossRef  PubMed  Google Scholar 

  152. von Herrath M, Nepom GT. Animal models of human type 1 diabetes. Nat Immunol. 2009;10:129–32.

    CrossRef  CAS  Google Scholar 

  153. Bian X, Wallstrom G, Davis A, et al. Immunoproteomic profiling of antiviral antibodies in new-onset type 1 diabetes using protein arrays. Diabetes. 2016;65:285–96. 2015/10/10. https://doi.org/10.2337/db15-0179.

    CAS  CrossRef  PubMed  Google Scholar 

  154. Capua I, Mercalli A, Romero-Tejeda A, et al. Study of 2009 H1N1 pandemic influenza virus as a possible causative agent of diabetes. J Clin Endocrinol Metab. 2018;103:4343–56. 2018/09/12. https://doi.org/10.1210/jc.2018-00862.

    CrossRef  PubMed  Google Scholar 

  155. Fujiya A, Ochiai H, Mizukoshi T, et al. Fulminant type 1 diabetes mellitus associated with a reactivation of Epstein-Barr virus that developed in the course of chemotherapy of multiple myeloma. J Diab Invest. 2010;1:286–9. 2010/12/03. https://doi.org/10.1111/j.2040-1124.2010.00061.x.

    CrossRef  Google Scholar 

  156. Gale EA. Congenital rubella: citation virus or viral cause of type 1 diabetes? Diabetologia. 2008;51:1559–66. 2008/07/22. https://doi.org/10.1007/s00125-008-1099-4.

    CAS  CrossRef  PubMed  Google Scholar 

  157. Hiltunen M, Hyoty H, Karjalainen J, et al. Serological evaluation of the role of cytomegalovirus in the pathogenesis of IDDM: a prospective study. The Childhood Diabetes in Finland Study Group. Diabetologia. 1995;38:705–10. 1995/06/01

    CAS  PubMed  CrossRef  Google Scholar 

  158. Honeyman MC, Coulson BS, Stone NL, et al. Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes. 2000;49:1319–24. 2000/08/03. https://doi.org/10.2337/diabetes.49.8.1319.

    CAS  CrossRef  PubMed  Google Scholar 

  159. Krogvold L, Edwin B, Buanes T, et al. Detection of a low-grade enteroviral infection in the islets of langerhans of living patients newly diagnosed with type 1 diabetes. Diabetes. 2015;64:1682–7. 2014/11/26. https://doi.org/10.2337/db14-1370.

    CAS  CrossRef  PubMed  Google Scholar 

  160. Laitinen OH, Honkanen H, Pakkanen O, et al. Coxsackievirus B1 is associated with induction of beta-cell autoimmunity that portends type 1 diabetes. Diabetes. 2014;63:446–55. 2013/08/27. https://doi.org/10.2337/db13-0619.

    CAS  CrossRef  PubMed  Google Scholar 

  161. Lindberg B, Ahlfors K, Carlsson A, et al. Previous exposure to measles, mumps, and rubella--but not vaccination during adolescence--correlates to the prevalence of pancreatic and thyroid autoantibodies. Pediatrics. 1999;104:e12. 1999/07/02. https://doi.org/10.1542/peds.104.1.e12.

    CAS  CrossRef  PubMed  Google Scholar 

  162. Oikarinen S, Tauriainen S, Hober D, et al. Virus antibody survey in different European populations indicates risk association between coxsackievirus B1 and type 1 diabetes. Diabetes. 2014;63:655–62. 2013/09/07. https://doi.org/10.2337/db13-0620.

    CAS  CrossRef  PubMed  Google Scholar 

  163. Pak CY, Eun HM, McArthur RG, et al. Association of cytomegalovirus infection with autoimmune type 1 diabetes. Lancet. 1988;2:1–4. 1988/07/02. https://doi.org/10.1016/s0140-6736(88)92941-8.

    CAS  CrossRef  PubMed  Google Scholar 

  164. Sano H, Terasaki J, Tsutsumi C, et al. A case of fulminant type 1 diabetes mellitus after influenza B infection. Diabetes Res Clin Pract. 2008;79:e8-9. 2008/01/08. https://doi.org/10.1016/j.diabres.2007.10.030.

    CrossRef  PubMed  Google Scholar 

  165. Aarnisalo J, Veijola R, Vainionpaa R, et al. Cytomegalovirus infection in early infancy: risk of induction and progression of autoimmunity associated with type 1 diabetes. Diabetologia. 2008;51:769–72. 2008/02/19. https://doi.org/10.1007/s00125-008-0945-8.

    CAS  CrossRef  PubMed  Google Scholar 

  166. Williamson JSP, Stohlman SA. Effective clearance of mouse hepatitis-virus from the central-nervous-system requires both CD4+ and CD8+ T-cells. J Virol. 1990;64:4589–92. Note

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  167. MacDuff DA, Reese TA, Kimmey JM, et al. Phenotypic complementation of genetic immunodeficiency by chronic herpesvirus infection. eLife. 2015;4. https://doi.org/10.7554/eLife.04494.

  168. Hansen CHF, Nielsen DS, Kverka M, et al. Patterns of early gut colonization shape future immune responses of the host. Plos One. 2012;7:e34043. https://doi.org/10.1371/journal.pone.0034043. [doi];PONE-D-11-21227 [pii]

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  169. Weng M, Walker WA. The role of gut microbiota in programming the immune phenotype. J Dev Orig Health Dis. 2013;4:203–14. https://doi.org/10.1017/s2040174412000712.

    CAS  CrossRef  PubMed  Google Scholar 

  170. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480-484U487. https://doi.org/10.1038/nature07540.

    CAS  CrossRef  Google Scholar 

  171. Unger WWJ, Hauet-Broere F, Jansen W, et al. Early events in peripheral regulatory T cell induction via the nasal mucosa. J Immunol. 2003;171:4592–603. Article

    CAS  PubMed  CrossRef  Google Scholar 

  172. Schloss PD, Schubert AM, Zackular JP, et al. Stabilization of the murine gut microbiome following weaning. Gut Microbes. 2012;3:383–93. https://doi.org/10.4161/gmic.21008.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  173. Hansen CH, Andersen LS, Krych L, et al. Mode of delivery shapes gut colonization pattern and modulates regulatory immunity in mice. J Immunol. 2014;193:1213–22. 2014/06/22. https://doi.org/10.4049/jimmunol.1400085.

    CAS  CrossRef  PubMed  Google Scholar 

  174. Org E, Parks BW, Joo JWJ, et al. Genetic and environmental control of host-gut microbiota interactions. Genome Res. 2015;25:1558–69. Article. https://doi.org/10.1101/gr.194118.115.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  175. Shade A, Handelsman J. Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol. 2012;14:4–12. https://doi.org/10.1111/j.1462-2920.2011.02585.x.

    CAS  CrossRef  PubMed  Google Scholar 

  176. Hansen CH, Krych L, Buschard K, et al. A maternal gluten-free diet reduces inflammation and diabetes incidence in the offspring of NOD mice. Diabetes. 2014;63:2821–32. 2014/04/04. https://doi.org/10.2337/db13-1612.

    CAS  CrossRef  PubMed  Google Scholar 

  177. Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214. Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov’t; Twin Study. https://doi.org/10.1126/science.1241214.

    CAS  CrossRef  PubMed  Google Scholar 

  178. Lees H, Swann J, Poucher SM, et al. Age and microenvironment outweigh genetic influence on the Zucker Rat microbiome. Plos One. 2014;9. Article. https://doi.org/10.1371/journal.pone.0100916.

  179. Thoene-Reineke C, Fischer A, Friese C, et al. Composition of intestinal microbiota in immune-deficient mice kept in three different housing conditions. PLoS One. 2014;9:e113406. https://doi.org/10.1371/journal.pone.0113406.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  180. Turnbaugh P, Ridaura V, Faith J, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1:6ra14.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  181. Cani PD, Delzenne NM. Gut microflora as a target for energy and metabolic homeostasis. Curr Opin Clin Nutr Metab Care. 2007;10:729–34. 2007/12/20. https://doi.org/10.1097/MCO.0b013e3282efdebb.

    CrossRef  PubMed  Google Scholar 

  182. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–72. Article. https://doi.org/10.2337/db06-1491.

    CAS  CrossRef  PubMed  Google Scholar 

  183. Tranberg B, Madsen AN, Hansen AK, et al. Whey-reduced weight gain is associated with a temporary growth reduction in young mice fed a high-fat diet. J Nutr Biochem. 2015;26:9–15.

    CAS  PubMed  CrossRef  Google Scholar 

  184. Tranberg B, Hellgren LI, Lykkesfeldt J, et al. Whey protein reduces early life weight gain in mice fed a high-fat diet. PLoS One. 2013;8:e71439. https://doi.org/10.1371/journal.pone.0071439.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  185. Rune I, Rolin B, Lykkesfeldt J, et al. Long-term Western diet fed apolipoprotein E-deficient rats exhibit only modest early atherosclerotic characteristics. Sci Rep. 2018;8:5416. 2018/04/05. https://doi.org/10.1038/s41598-018-23835-z.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  186. Rune I, Rolin B, Larsen C, et al. Modulating the gut microbiota improves glucose tolerance, lipoprotein profile and atherosclerotic plaque development in ApoE-deficient mice. PLoS One. 2016;11:e0146439. 2016/01/23. https://doi.org/10.1371/journal.pone.0146439.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  187. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8. 2011/09/03. https://doi.org/10.1126/science.1208344.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  188. Macia L, Tan J, Vieira AT, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun. 2015;6. https://doi.org/10.1038/ncomms7734.

  189. Nielsen DS, Krych L, Buschard K, et al. Beyond genetics. Influence of dietary factors and gut microbiota on type 1 diabetes. FEBS Lett. 2014;588:4234–43. 2014/04/22. https://doi.org/10.1016/j.febslet.2014.04.010.

    CAS  CrossRef  PubMed  Google Scholar 

  190. Hrncir T, Stepankova R, Kozakova H, et al. Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice. BMC Immunol. 2008;9. Article https://doi.org/10.1186/1471-2172-9-65.

  191. Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57:1470–81.

    CAS  PubMed  CrossRef  Google Scholar 

  192. Li W, Dowd SE, Scurlock B, et al. Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiol Behav. 2009;96:557–67. https://doi.org/10.1016/j.physbeh.2008.12.004.

    CAS  CrossRef  PubMed  Google Scholar 

  193. Jorgensen BP, Hansen JT, Krych L, et al. A possible link between food and mood: dietary impact on gut microbiota and behavior in BALB/c mice. PLoS One. 2014;9:ARTN e103398. https://doi.org/10.1371/journal.pone.0103398.

    CAS  CrossRef  Google Scholar 

  194. Lindenberg FCB, Ellekilde M, Thorn AC, et al. Dietary LPS traces influences disease expression of the diet-induced obese mouse. Res Vet Sci. 2019;123:195–203. 2019/01/27. https://doi.org/10.1016/j.rvsc.2019.01.005.

    CAS  CrossRef  PubMed  Google Scholar 

  195. Kihl P, Krych L, Deng L, et al. Oral LPS dosing induces local immunological changes in the pancreatic lymph nodes in mice. 2019.

    Google Scholar 

  196. Lindenberg FCB, Ellekilde M, Thörn AC, et al. Dietary LPS traces influence disease expression of the diet-induced obese mouse. Res Vet Sci. 2019;123:195–203.

    CAS  PubMed  CrossRef  Google Scholar 

  197. Perin D, Murano E. Starch polysaccharides in the human diet: effect of the different source and processing on its absorption. Nat Prod Commun. 2017;12:837–53.

    CAS  Google Scholar 

  198. Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58:1091–103.

    CAS  PubMed  CrossRef  Google Scholar 

  199. Izydorczyk MS, Dexter JE. Barley β-glucans and arabinoxylans: molecular structure, physicochemical properties, and uses in food products–a review. Food Res Int. 2008;41:850–68. https://doi.org/10.1016/j.foodres.2008.04.001.

    CAS  CrossRef  Google Scholar 

  200. Durr C, Brunel-Muguet S, Girousse C, et al. Changes in seed composition and germination of wheat (Triticum aestivum) and pea (Pisum sativum) when exposed to high temperatures during grain filling and maturation. Crop Pasture Sci. 2018;69:374–86. https://doi.org/10.1071/cp17397.

    CrossRef  Google Scholar 

  201. Johansson DP, Gutierrez JLV, Landberg R, et al. Impact of food processing on rye product properties and their in vitro digestion. Eur J Nutr. 2018;57:1651–66. https://doi.org/10.1007/s00394-017-1450-y.

    CAS  CrossRef  PubMed  Google Scholar 

  202. Katyal M, Singh N, Chopra N, et al. Hard, medium-hard and extraordinarily soft wheat varieties: comparison and relationship between various starch properties. Int J Biol Macromol. 2019;123:1143–9. https://doi.org/10.1016/j.ijbiomac.2018.11.192.

    CAS  CrossRef  PubMed  Google Scholar 

  203. Sofi MH, Gudi R, Karumuthil-Melethil S, et al. pH of drinking water influences the composition of gut microbiome and Type 1 diabetes incidence. Diabetes. 2014;63:632–44. Article. https://doi.org/10.2337/db13-0981.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  204. Ivanov II, Frutos RD, Manel N, et al. Specific microbiota direct the differentiation of IL-17-producing T-Helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4:337–49. https://doi.org/10.1016/j.chom.2008.09.009.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  205. Hansen CHF, Krych L, Nielsen DS, et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in non-obese diabetic (NOD) mice. Diabetologia. 2012;55:2285–94.

    CAS  PubMed  CrossRef  Google Scholar 

  206. O’Callaghan A, van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol. 2016;7. https://doi.org/10.3389/fmicb.2016.00925.

  207. Fernandez J, Redondo-Blanco S, Gutierrez-del-Rio I, et al. Colon microbiota fermentation of dietary prebiotics towards short-chain fatty acids and their roles as anti-inflammatory and antitumour agents: a review. J Funct Foods. 2016;25:511–22. https://doi.org/10.1016/j.jff.2016.06.032.

    CAS  CrossRef  Google Scholar 

  208. Jain I, Kumar V, Satyanarayana T. Xylooligosaccharides: an economical prebiotic from agroresidues and their health benefits. Indian J Exp Biol. 2015;53:131–42.

    PubMed  Google Scholar 

  209. Hart ML, Ericsson AC, Franklin CL. Differing complex microbiota alter disease severity of the IL-10(-/-) mouse model of inflammatory bowel disease. Front Microbiol. 2017;8:15. Article. https://doi.org/10.3389/fmicb.2077.00792.

    CrossRef  Google Scholar 

  210. Respondek F, Gerard P, Bossis M, et al. Short-chain fructo-oligosaccharides modulate intestinal microbiota and metabolic parameters of humanized gnotobiotic diet induced obesity mice. PLoS One. 2013;8. https://doi.org/10.1371/journal.pone.0071026.

  211. Goodman A, Kallstrom G, Faith J, et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci USA. 2011;108:6252–7.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  212. Chung H, Pamp SJ, Hill JA, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012;149:1578–93.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  213. Le Roy T, Debédat J, Marquet F, et al. Comparative evaluation of microbiota engraftment following fecal microbiota transfer in mice models: age, kinetic and microbial status matter. Front Microbiol. 2019;9. https://doi.org/10.3389/fmicb.2018.03289.

  214. Ellekilde M, Selfjord E, Larsen CS, et al. Transfer of gut microbiota from lean and obese mice to antibiotic-treated mice. Sci Rep. 2014;4:5922. https://doi.org/10.1038/srep05922.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  215. Hansen AK, Krych L, Nielsen DS, et al. A review of applied aspects of dealing with gut microbiota impact on rodent models. ILAR J. 2015;56:250–64. https://doi.org/10.1093/ilar/ilv010.

    CAS  CrossRef  PubMed  Google Scholar 

  216. Lundberg R, Toft MF, August B, et al. Antibiotic-treated versus germ-free rodents for microbiota transplantation studies. Gut Microbes. 2016;7:68–74.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  217. Lützhøft DV, Sánchez-Alcoholado L, Tougaard P, et al. Gut microbial colonization of C57BL/6NTac mouse colon using faecal transfer was equally effective when comparing rectal inoculation and oral inoculation based on 16S rRNA sequencing. Res Vet Sci. 2019;126:227–32.

    PubMed  CrossRef  CAS  Google Scholar 

  218. McCafferty J, Muhlbauer M, Gharaibeh RZ, et al. Stochastic changes over time and not founder effects drive cage effects in microbial community assembly in a mouse model. ISME J. 2013;7:2116–25. Article. https://doi.org/10.1038/ismej.2013.106.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  219. Lundberg R, Bahl MI, Licht TR, et al. Microbiota composition of simultaneously colonized mice housed under either a gnotobiotic isolator or individually ventilated cage regime. Sci Rep. 2017;7:42245. Article

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  220. Caruso R, Ono M, Bunker ME, et al. Dynamic and asymmetric changes of the microbial communities after cohousing in laboratory mice. Cell Rep. 2019;27:3401. Article. https://doi.org/10.1016/j.celrep.2019.05.042.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  221. Hansen AK, Hansen CH, Krych L, et al. Impact of the gut microbiota on rodent models of human disease. World J Gastroenterol. 2014;20:17727–36. 2014/12/31. https://doi.org/10.3748/wjg.v20.i47.17727.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  222. Jentsch JD, Roth RH. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology. 1999;20:201–25. https://doi.org/10.1016/S0893-133X(98)00060-8.

    CAS  CrossRef  PubMed  Google Scholar 

  223. Kesner RP, Dakis M. Phencyclidine disrupts acquisition and retention performance within a spatial continuous recognition memory task. Pharmacol Biochem Behav. 1993;44:419–24. Article. https://doi.org/10.1016/0091-3057(93)90484-b.

    CAS  CrossRef  PubMed  Google Scholar 

  224. Sinha YN, Thomas JW, Salocks CB, et al. Prolactin and growth-hormone secretion in diet-induced obesity in mice. Horm Metab Res. 1977;9:277–82. Article. https://doi.org/10.1055/s-0028-1093552.

    CAS  CrossRef  PubMed  Google Scholar 

  225. Heydemann A. An overview of murine high fat diet as a model for type 2 diabetes mellitus. J Diabetes Res. 2016;14. Review. https://doi.org/10.1155/2016/2902351.

  226. Rune I, Hansen CH, Ellekilde M, et al. Ampicillin-improved glucose tolerance in diet-induced obese C57BL/6NTac mice is age dependent. J Diabetes Res. 2013;2013:319321. https://doi.org/10.1155/2013/319321.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  227. Castro-Mejia JL, Jakesevic M, Fabricius NF, et al. Gut microbiota recovery and immune response in ampicillin-treated mice. Res Vet Sci. 2018;118:357–64. 2018/04/14. https://doi.org/10.1016/j.rvsc.2018.03.013.

    CAS  CrossRef  PubMed  Google Scholar 

  228. Hansen AK, Malm SA, Metzdorff SB. The cre-inducer doxycycline lowers cytokine and chemokine transcript levels in the gut of mice. J Appl Genet. 2017:1–4.

    Google Scholar 

  229. European_Union. Directive 2010/63/EU of The European Parliament and The Council of 22 September 2010 on the Protection of Animals used for Scientific Purposes. 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Kornerup Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Hansen, A.K. (2021). Microbiology and Microbiome. In: Sánchez Morgado, J.M., Brønstad, A. (eds) Experimental Design and Reproducibility in Preclinical Animal Studies . Laboratory Animal Science and Medicine, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-66147-2_4

Download citation