Skip to main content

What Leads to Generalization of Object Proposals?

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12536))

Included in the following conference series:

Abstract

Object proposal generation is often the first step in many detection models. It is lucrative to train a good proposal model, that generalizes to unseen classes. Motivated by this, we study how a detection model trained on a small set of source classes can provide proposals that generalize to unseen classes. We systematically study the properties of the dataset – visual diversity and label space granularity – required for good generalization. We show the trade-off between using fine-grained labels and coarse labels. We introduce the idea of prototypical classes: a set of sufficient and necessary classes required to train a detection model to obtain generalized proposals in a more data-efficient way. On the Open Images V4 dataset, we show that only \(25\%\) of the classes can be selected to form such a prototypical set. The resulting proposals from a model trained with these classes is only \(4.3\%\) worse than using all the classes, in terms of average recall (AR). We also demonstrate that Faster R-CNN model leads to better generalization of proposals compared to a single-stage network like RetinaNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We chose [25] due to its simplicity. In practice, we can use other weakly supervised approaches too.

References

  1. Arun, A., Jawahar, C., Kumar, M.P.: Dissimilarity coefficient based weakly supervised object detection. In: CVPR (2019)

    Google Scholar 

  2. Chavali, N., Agrawal, H., Mahendru, A., Batra, D.: Object-proposal evaluation protocol is ‘gameable’. In: CVPR (2016)

    Google Scholar 

  3. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: NeurIPS (2016)

    Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  5. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1627–1645 (2009)

    Article  Google Scholar 

  6. Gao, J., Wang, J., Dai, S., Li, L.J., Nevatia, R.: NOTE-RCNN: noise tolerant ensemble RCNN for semi-supervised object detection. In: ICCV (2019)

    Google Scholar 

  7. Gao, Y., et al.: C-MIDN: coupled multiple instance detection network with segmentation guidance for weakly supervised object detection. In: ICCV (2019)

    Google Scholar 

  8. Girshick, R., Radosavovic, I., Gkioxari, G., Dollár, P., He, K.: Detectron (2018)

    Google Scholar 

  9. Guillaumin, M., Ferrari, V.: Large-scale knowledge transfer for object localization in ImageNet. In: CVPR (2012)

    Google Scholar 

  10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  11. Hoffman, J., et al.: LSDA: large scale detection through adaptation. In: NeurIPS (2014)

    Google Scholar 

  12. Hoffman, J., et al.: Large scale visual recognition through adaptation using joint representation and multiple instance learning. J. Mach. Learn. Res. 17, 4954–4984 (2016)

    MathSciNet  Google Scholar 

  13. Hosang, J., Benenson, R., Dollár, P., Schiele, B.: What makes for effective detection proposals? IEEE Trans. Pattern Anal. Mach. Intell. 38, 814–830 (2015)

    Article  Google Scholar 

  14. Krähenbühl, P., Koltun, V.: Geodesic object proposals. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 725–739. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_47

    Chapter  Google Scholar 

  15. Kuo, W., Hariharan, B., Malik, J.: DeepBox: learning objectness with convolutional networks. In: ICCV (2015)

    Google Scholar 

  16. Kuznetsova, A., et al.: The open images dataset v4: unified image classification, object detection, and visual relationship detection at scale. arXiv preprint arXiv:1811.00982 (2018)

  17. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  18. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  19. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  21. Novotny, D., Larlus, D., Vedaldi, A.: I have seen enough: transferring parts across categories. In: BMVC (2016)

    Google Scholar 

  22. Ott, P., Everingham, M.: Shared parts for deformable part-based models. In: CVPR (2011)

    Google Scholar 

  23. Pinheiro, P.O., Collobert, R., Dollár, P.: Learning to segment object candidates. In: NeurIPS (2015)

    Google Scholar 

  24. Pont-Tuset, J., Arbelaez, P., Barron, J.T., Marques, F., Malik, J.: Multiscale combinatorial grouping for image segmentation and object proposal generation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 128–140 (2016)

    Article  Google Scholar 

  25. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: CVPR (2017)

    Google Scholar 

  26. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS (2015)

    Google Scholar 

  27. Rochan, M., Wang, Y.: Weakly supervised localization of novel objects using appearance transfer. In: CVPR (2015)

    Google Scholar 

  28. Salakhutdinov, R., Torralba, A., Tenenbaum, J.: Learning to share visual appearance for multiclass object detection. In: CVPR (2011)

    Google Scholar 

  29. Singh, B., Li, H., Sharma, A., Davis, L.S.: R-FCN-3000 at 30fps: decoupling detection and classification. In: CVPR (2018)

    Google Scholar 

  30. Szegedy, C., Reed, S., Erhan, D., Anguelov, D., Ioffe, S.: Scalable, high-quality object detection. arXiv preprint arXiv:1412.1441 (2014)

  31. Tang, P., et al.: PCL: proposal cluster learning for weakly supervised object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42, 176–191 (2018)

    Article  Google Scholar 

  32. Tang, Y., Wang, J., Gao, B., Dellandréa, E., Gaizauskas, R., Chen, L.: Large scale semi-supervised object detection using visual and semantic knowledge transfer. In: CVPR (2016)

    Google Scholar 

  33. Torralba, A., Murphy, K.P., Freeman, W.T., et al.: Sharing features: efficient boosting procedures for multiclass object detection. In: CVPR (2004)

    Google Scholar 

  34. Uijlings, J., Popov, S., Ferrari, V.: Revisiting knowledge transfer for training object class detectors. In: CVPR (2018)

    Google Scholar 

  35. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vis. 104, 154–171 (2013)

    Article  Google Scholar 

  36. Yang, H., Wu, H., Chen, H.: Detecting 11K classes: large scale object detection without fine-grained bounding boxes. arXiv preprint arXiv:1908.05217 (2019)

  37. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_26

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 133 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, R., Mahajan, D., Ramanathan, V. (2020). What Leads to Generalization of Object Proposals?. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12536. Springer, Cham. https://doi.org/10.1007/978-3-030-66096-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66096-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66095-6

  • Online ISBN: 978-3-030-66096-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics