Skip to main content

TDMPNet: Prototype Network with Recurrent Top-Down Modulation for Robust Object Classification Under Partial Occlusion

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12536))

Included in the following conference series:

Abstract

Despite deep convolutional neural networks’ great success in object classification, recent work has shown that they suffer from a severe generalization performance drop under occlusion conditions that do not appear in the training data. Due to the large variability of occluders in terms of shape and appearance, training data can hardly cover all possible occlusion conditions. However, in practice we expect models to reliably generalize to various novel occlusion conditions, rather than being limited to the training conditions. In this work, we integrate inductive priors including prototypes, partial matching and top-down modulation into deep neural networks to realize robust object classification under novel occlusion conditions, with limited occlusion in training data. We first introduce prototype learning as its regularization encourages compact data clusters for better generalization ability. Then, a visibility map at the intermediate layer based on feature dictionary and activation scale is estimated for partial matching, whose prior sifts irrelevant information out when comparing features with prototypes. Further, inspired by the important role of feedback connection in neuroscience for object recognition under occlusion, a structural prior, i.e. top-down modulation, is introduced into convolution layers, purposefully reducing the contamination by occlusion during feature extraction. Experiment results on partially occluded MNIST, vehicles from the PASCAL3D+ dataset, and vehicles from the cropped COCO dataset demonstrate the improvement under both simulated and real-world novel occlusion conditions, as well as under the transfer of datasets.

M. Xiao and R. Wu—Work done at Johns Hopkins University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)

  2. Economist, T.: Why uber’s self-driving car killed a pedestrian (2017)

    Google Scholar 

  3. Fawzi, A., Frossard, P.: Measuring the effect of nuisance variables on classifiers. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 137.1-137.12. BMVA (2016). https://doi.org/10.5244/C.30.137

  4. Fu, J., Zheng, H., Mei, T.: Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4438–4446 (2017)

    Google Scholar 

  5. Gilbert, C.D., Li, W.: Top-down influences on visual processing. Nat. Rev. Neurosci. 14(5), 350 (2013)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Kortylewski, A., He, J., Liu, Q., Yuille, A.L.: Compositional convolutional neural networks: A deep architecture with innate robustness to partial occlusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8940–8949 (2020)

    Google Scholar 

  8. Kortylewski, A., Liu, Q., Wang, H., Zhang, Z., Yuille, A.: Combining compositional models and deep networks for robust object classification under occlusion. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 1333–1341 (2020)

    Google Scholar 

  9. LeCun, Y.: The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/ (1998)

  10. Li, X., Jie, Z., Feng, J., Liu, C., Yan, S.: Learning with rethinking: recurrently improving convolutional neural networks through feedback. Pattern Recognit. 79, 183–194 (2018)

    Article  Google Scholar 

  11. Liao, R., Schwing, A., Zemel, R., Urtasun, R.: Learning deep parsimonious representations. In: Advances in Neural Information Processing Systems, pp. 5076–5084 (2016)

    Google Scholar 

  12. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  13. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  14. Nayebi, A., et al.: Task-driven convolutional recurrent models of the visual system. In: Advances in Neural Information Processing Systems, pp. 5290–5301 (2018)

    Google Scholar 

  15. O’Reilly, R.C., Wyatte, D., Herd, S., Mingus, B., Jilk, D.J.: Recurrent processing during object recognition. Front. Psychol. 4, 124 (2013)

    Article  Google Scholar 

  16. Rajaei, K., Mohsenzadeh, Y., Ebrahimpour, R., Khaligh-Razavi, S.M.: Beyond core object recognition: recurrent processes account for object recognition under occlusion. PLoS Comput. Biol. 15(5), e1007001 (2019)

    Article  Google Scholar 

  17. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  20. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems, pp. 4077–4087 (2017)

    Google Scholar 

  21. Spoerer, C.J., McClure, P., Kriegeskorte, N.: Recurrent convolutional neural networks: a better model of biological object recognition. Front. Psychol. 8, 1551 (2017)

    Article  Google Scholar 

  22. Sutskever, I., Hinton, G.E., Krizhevsky, A.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  23. Vinyals, O., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, pp. 3630–3638 (2016)

    Google Scholar 

  24. Wang, J., Zhang, Z., Xie, C., Premachandran, V., Yuille, A.: Unsupervised learning of object semantic parts from internal states of cnns by population encoding. arXiv preprint arXiv:1511.06855 (2015)

  25. Wang, J., et al.: Visual concepts and compositional voting. arXiv preprint arXiv:1711.04451 (2017)

  26. Xiang, Y., Mottaghi, R., Savarese, S.: Beyond pascal: a benchmark for 3D object detection in the wild. In: IEEE Winter Conference on Applications of Computer Vision, pp. 75–82. IEEE (2014)

    Google Scholar 

  27. Yang, H.M., Zhang, X.Y., Yin, F., Liu, C.L.: Robust classification with convolutional prototype learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3474–3482 (2018)

    Google Scholar 

  28. Yang, Y., Zhong, Z., Shen, T., Lin, Z.: Convolutional neural networks with alternately updated clique. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2413–2422 (2018)

    Google Scholar 

  29. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: regularization strategy to train strong classifiers with localizable features. arXiv preprint arXiv:1905.04899 (2019)

  30. Zhang, Q., Nian Wu, Y., Zhu, S.C.: Interpretable convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8827–8836 (2018)

    Google Scholar 

  31. Zhang, Z., Xie, C., Wang, J., Xie, L., Yuille, A.L.: Deepvoting: a robust and explainable deep network for semantic part detection under partial occlusion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1372–1380 (2018)

    Google Scholar 

  32. Zhu, H., Tang, P., Yuille, A.: Robustness of object recognition under extreme occlusion in humans and computational models. arXiv preprint arXiv:1905.04598 (2019)

Download references

Acknowledgements

This work was partly supported by ONR N00014-18-1-2119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqing Xiao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5332 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, M., Kortylewski, A., Wu, R., Qiao, S., Shen, W., Yuille, A. (2020). TDMPNet: Prototype Network with Recurrent Top-Down Modulation for Robust Object Classification Under Partial Occlusion. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12536. Springer, Cham. https://doi.org/10.1007/978-3-030-66096-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66096-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66095-6

  • Online ISBN: 978-3-030-66096-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics