Skip to main content

Autonomous Shuttle Development at Universiti Malaysia Pahang: LiDAR Point Cloud Data Stitching and Mapping Using Iterative Closest Point Cloud Algorithm

  • Chapter
  • First Online:
Towards Connected and Autonomous Vehicle Highways

Abstract

Autonomous shuttle development has gained popularity as one of the research development areas in autonomous vehicle field. In this chapter, the shuttle development in Universiti Malaysia Pahang is highlighted, while its vehicle simulation environment is developed to mimic the real environment of the university which consists of many roundabout junctions. The roundabout environment is constructed in vehicle simulator for data logging and testing and then published to the ROS network. Point cloud matrices from different moving frames are stitched using iterative closest point (ICP) algorithm to form a final useful map for further post-processing. The ICP algorithm performance is shown with different number of stitching frames and the results show that the algorithm is capable to show a reliable single map from different point cloud frames.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Bimbraw, Autonomous cars: Past, present and future. 12th Int. Conf. Informatics Control. Autom. Robot. 01, 191–198 (2015)

    Article  Google Scholar 

  2. M. Salazar, F. Rossi, M. Schiffer, C.H. Onder, M. Pavone, On the interaction between autonomous mobility-on-demand and public transportation systems, in 2018 21st International Conference on Intelligent Transportation Systems (ITSC), (2018), pp. 2262–2269. https://doi.org/10.1109/ITSC.2018.8569381.

    Chapter  Google Scholar 

  3. U.Z.A. Hamid, S.Z. Ishak, F. Imaduddin, Current landscape of the automotive field in the ASEAN region: Case study of Singapore, Malaysia and Indonesia – a brief overview. Asean J. Automot. Technol. 1(1), 21–28 (2019)

    Google Scholar 

  4. M.A. Zakaria, H. Zamzuri, R. Mamat, S.A. Mazlan, A path tracking algorithm using future prediction control with spike detection for an autonomous vehicle robot. Int. J. Adv. Robot. Syst. 10 (2013). https://doi.org/10.5772/56658

  5. K.A. Zulkepli, H. Zamzuri, M.A.A. Rahman, W.J. Yahya, M. Aizzat, M.Z.A. Zakaria, F.R.A Zakuan, N.H. Faezaa, I-drive: Modular system architecture and hardware configuration for an intelligent vehicle research platform. ARPN J Eng App Sci 12, 4259–4264 (2017)

    Google Scholar 

  6. L.C. Básaca-Preciado et al., Intelligent transportation scheme for autonomous vehicle in smart campus. Proc. IECON 2018 – 44th Annu. Conf. IEEE Ind. Electron. Soc., 3193–3199 (2018). https://doi.org/10.1109/IECON.2018.8592824

  7. P. Marin-Plaza, A. Hussein, D. Martin, A. de la Escalera, iCab use case for ROS-based architecture. Robot. Auton. Syst. 118, 251–262 (2019). https://doi.org/10.1016/j.robot.2019.04.008.

    Article  Google Scholar 

  8. K. Baarath, M.A. Zakaria, M.H. Bin Peeie, U.Z.A. Hamid, A.F.A. Nasir, An investigation on the effect of lateral motion on normal forces acting on each tires for nonholonomic electric vehicle: Experimental results validation, in The IAVSD International Symposium on Dynamics of Vehicles on Roads and Tracks, (2019), pp. 1643–1650

    Google Scholar 

  9. W.K. Chew, M.A. Zakaria, Rover Car Outdoor Localization for Navigation Tracking Using Differential Global Positioning System Estimation. Symp Intell Manuf Mechatron, 535–556 (2019)

    Google Scholar 

  10. R. Miyamoto et al., Vision-based road-following using results of semantic segmentation for autonomous navigation. IEEE Int. Conf. Consum. Electron. – Berlin, ICCE-Berlin 2019, 174–179 (2019). https://doi.org/10.1109/ICCE-Berlin47944.2019.8966198

    Article  Google Scholar 

  11. D. Droeschel, M. Schwarz, S. Behnke, Continuous mapping and localization for autonomous navigation in rough terrain using a 3D laser scanner. Robot. Auton. Syst. 88, 104–115 (2017). https://doi.org/10.1016/j.robot.2016.10.017

    Article  Google Scholar 

  12. T. Wan et al., RGB-D point cloud registration via infrared and color camera. Multimed. Tools Appl. 78(23), 33223–33246 (2019). https://doi.org/10.1007/s11042-019-7159-6

    Article  Google Scholar 

  13. S.A.S. Mohamed, M.H. Haghbayan, T. Westerlund, J. Heikkonen, H. Tenhunen, J. Plosila, A survey on Odometry for autonomous navigation systems. IEEE Access 7, 97466–97486 (2019). https://doi.org/10.1109/ACCESS.2019.2929133

    Article  Google Scholar 

  14. X. Zhang, C. Glennie, A. Kusari, LiDAR using a weighted anisotropic iterative closest point algorithm. IEEE J Sel Top Appl Earth Obs Remote Sens 8(7), 3338–3346 (2015)

    Article  Google Scholar 

  15. F.A. Donoso, K.J. Austin, P.R. McAree, How do ICP variants perform when used for scan matching terrain point clouds? Robot. Auton. Syst. 87, 147–161 (2017). https://doi.org/10.1016/j.robot.2016.10.011

    Article  Google Scholar 

  16. H. Liu, T. Liu, Y. Li, M. Xi, T. Li, Y. Wang, Point cloud registration based on MCMC-SA ICP algorithm. IEEE Access 7, 73637–73648 (2019). https://doi.org/10.1109/ACCESS.2019.2919989

    Article  Google Scholar 

  17. R. Marani, V. Renò, M. Nitti, T. D’Orazio, E. Stella, A modified iterative closest point algorithm for 3D point cloud registration. Comput. Civ. Infrastruct. Eng. 31(7), 515–534 (2016). https://doi.org/10.1111/mice.12184

    Article  Google Scholar 

  18. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, V. Koltun, CARLA: An open urban driving simulator. Proc 1st Annu Conf Robot Learn, 1–16 (2017)

    Google Scholar 

  19. C. Crick, G. Jay, S. Osentoski, B. Pitzer, O.C. Jenkins, Rosbridge: Ros for non-ros users, in Robotics Research, (Springer, 2017), pp. 493–504

    Google Scholar 

  20. D. Chetverikov, D. Svirko, D. Stepanov, P. Krsek, The trimmed iterative closest point algorithm. Proc. – Int. Conf. Pattern Recognit. 16(3), 545–548 (2002). https://doi.org/10.1109/icpr.2002.1047997.

    Article  Google Scholar 

  21. Q. Tian, Y.F. Gao, G.L. Li, J.X. Song, A novel global relocalization method based on hierarchical registration of 3D point cloud map for mobile robot. 2019 5th Int. Conf. Control. Autom. Robot. ICCAR 2019, 68–73 (2019). https://doi.org/10.1109/ICCAR.2019.8813720

  22. H. Sobreira et al., Map-matching algorithms for robot self-localization: A comparison between perfect match, iterative closest point and normal distributions transform. J. Intell. Robot. Syst. Theory Appl. 93(3–4), 533–546 (2019). https://doi.org/10.1007/s10846-017-0765-5.

    Article  Google Scholar 

  23. P. Kamencay, M. Sinko, R. Hudec, M. Benco, R. Radil, Improved feature point algorithm for 3D point cloud registration. 2019 42nd Int. Conf. Telecommun. Signal Process. TSP 2019, 517–520 (2019). https://doi.org/10.1109/TSP.2019.8769057

Download references

Acknowledgements

The author would like to thank Ministry of Higher EducationMalaysia (KPT) and Universiti Malaysia Pahang(www.ump.edu.my) for financial supports given under FRGS/1/2018/TK08/UMP/02/1, RDU1903139. Not forgotten to Universiti Malaysia Pahang for providing a flagship grant with vote number RDU192201 for the development of the autonomous shuttle prototype inside the campus. Special thanks to all Autonomous Vehicle Laboratory members, research assistants for the data logging and fabrication process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Aizzat Zakaria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zakaria, M.A., Kunjunni, B., Peeie, M.H.B., Papaioannou, G. (2021). Autonomous Shuttle Development at Universiti Malaysia Pahang: LiDAR Point Cloud Data Stitching and Mapping Using Iterative Closest Point Cloud Algorithm. In: Hamid, U.Z.A., Al-Turjman, F. (eds) Towards Connected and Autonomous Vehicle Highways. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-66042-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66042-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66041-3

  • Online ISBN: 978-3-030-66042-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics