Skip to main content

Metaheuristic Algorithms for Wireless Sensor Networks

  • Chapter
  • First Online:
Recent Metaheuristic Computation Schemes in Engineering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 948))

Abstract

This chapter presents the main concepts of metaheuristic schemes for Wireless Sensor Networks (WSNs). WSNs are multi-functional, low-cost, and low-power networks and rely on communications among devices, from sensor nodes to one or more sink nodes. Sink nodes, sometimes called coordinator nodes or root nodes, may be more robust and have larger processing capacity than the other nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernard MS, Pei T, Nasser K (2019) QoS strategies for wireless multimedia sensor networks in the context of IoT at the MAC Layer, Application Layer, and Cross-Layer Algorithms. J Comput Netw Commun

    Google Scholar 

  2. Aswale P, Shukla A, Bharati P, Bharambe S, Palve S (2019) An overview of internet of things: architecture protocols and challenges. In: Information and communication technology for intelligent systems. Springer, Singapore, pp 299–308

    Google Scholar 

  3. Guleria K, Verma AK (2019) Comprehensive review for energy efficient hierarchical routing protocols on wireless sensor networks. Wireless Netw 25(3):1159–1183

    Article  Google Scholar 

  4. Nayak AK, Mishra BSP, Das H (2019) In: Mishra BB, Dehuri S, Panigrahi BK (eds) Computational intelligence in sensor networks. Springer, Berlin

    Google Scholar 

  5. Kaveh A (2014) Advances in metaheuristic algorithms for optimal design of structures. Springer International Publishing, Switzerland, pp 9–40

    Book  Google Scholar 

  6. Xing H, Zhou X, Wang X, Luo S, Dai P, Li K, Yang H (2019) An integer encoding grey wolf optimizer for virtual network function placement. Appl Soft Comput 76:575–594

    Article  Google Scholar 

  7. Clausen T, Jacquet P (eds) (2003) RFC3626: optimized link state routing protocol (OLSR)

    Google Scholar 

  8. Boushaba A, Benabbou A, Benabbou R, Zahi A, Oumsis M (2015) Multi-point relay selection strategies to reduce topology control traffic for OLSR protocol in MANETs. J Netw Comput Appl 53:91–102

    Article  Google Scholar 

  9. García-Nieto JTJM, Alba E. (2010) Configuración Óptima del Protocolo de Encaminamiento OLSR para VANETs Mediante Evolución Diferencial, Conference: Congreso Español de Metaheurísticos, Algoritmos Evolutivos y Bioinspirados, (MAEB’10), Valencia

    Google Scholar 

  10. Price KV, Storn RM, Lampinen JA (2005) The differential evolution algorithm. Differential evolution: a practical approach to global optimization, pp 37–134

    Google Scholar 

  11. Lobato FS, Steffen V Jr, Neto AS (2012) Estimation of space-dependent single scattering albedo in a radiative transfer problem using differential evolution. Inverse Probl Sci Eng 20(7):1043–1055

    Article  MathSciNet  Google Scholar 

  12. Dorigo M (2007) Ant Colony Optimization. Scholarpedia 2(3):1461

    Article  MathSciNet  Google Scholar 

  13. Okdem S, Karaboga D (2009) Routing in wireless sensor networks using an ant colony optimization (ACO) router chip. Sensors 9(2):909–921

    Article  Google Scholar 

  14. Rodríguez AI (2013) Algoritmos Inspirados En Swarm Intelligence Para El Enrutamiento En Redes De Telecomunicaciones

    Google Scholar 

  15. Kaveh A, Ghobadi M (2020) Optimization of egress in fire using hybrid graph theory and metaheuristic algorithms. Iranian J Sci Technol Trans Civil Eng 1–8

    Google Scholar 

  16. Li M, Hao JK, Wu Q (2020) General swap-based multiple neighborhood adaptive search for the maximum balanced biclique problem. Comput Oper Res 104922

    Google Scholar 

  17. Resende MG, Ribeiro CC (2003) Greedy randomized adaptive search procedures. In: Handbook of metaheuristics. Springer, Boston, pp 219–249

    Google Scholar 

  18. Feo TA, Resende MG, Smith SH (1994) A greedy randomized adaptive search procedure for maximum independent set. Oper Res 42(5):860–878

    Article  Google Scholar 

  19. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  20. Faris H, Aljarah I, Al-Betar MA, Mirjalili S (2018) Grey wolf optimizer: a review of recent variants and applications. Neural Comput Appl 30(2):413–435

    Article  Google Scholar 

  21. Zhao X, Zhu H, Aleksic S, Gao Q (2018) Energy-efficient routing protocol for wireless sensor networks based on improved grey wolf optimizer. KSII Trans Internet Inf Syst 12(6)

    Google Scholar 

  22. Shah-Hosseini H (2009) The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. Int J Bio-Insp Comput 1(1–2):71–79

    Article  Google Scholar 

  23. Clerc M (2010) Particle swarm optimization, vol 93. Wiley, New York

    Google Scholar 

  24. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, vol 4. IEEE, pp 1942–1948, Nov 1995.

    Google Scholar 

  25. Lee A (2013) Particle swarm optimization (PSO) with constraint support. Python Software Foundation, Accessed 18 Apr 2018

    Google Scholar 

  26. Glover F, Laguna M (1998) Tabu search. In: Handbook of combinatorial optimization. Springer, Boston, pp 2093–2229

    Google Scholar 

  27. Laguna M, Kelly JP, González-Velarde J, Glover F (1995) Tabu search for the multilevel generalized assignment problem. Eur J Oper Res 82(1):176–189

    Article  Google Scholar 

  28. Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549

    Article  MathSciNet  Google Scholar 

  29. Gopakumar A, Jacob L (2009) Performance of some metaheuristic algorithms for localization in wireless sensor networks. Int J Netw Manage 19(5):355–373

    Article  Google Scholar 

  30. Batista BM, Glover F (2006) Introducción a la búsqueda Tabu, vol 3, pp 1–36

    Google Scholar 

  31. Yang XS, He X (2013) Firefly algorithm: recent advances and applications. arXiv preprint arXiv:1308.3898

  32. Nayak J, Naik B, Pelusi D, Krishna AV (2020) A comprehensive review and performance analysis of firefly algorithm for artificial neural networks. In: Nature-inspired computation in data mining and machine learning. Springer, Cham, pp 137–159

    Google Scholar 

  33. Bui DK, Nguyen TN, Ngo TD, Nguyen-Xuan H (2020) An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings. Energy 190:116370

    Article  Google Scholar 

  34. Mcclelland JL, Rumelhart DE, PDP Research Group et al (1987) Parallel distributed processing, vol 2. MIT press, Cambridge

    Google Scholar 

  35. Rojas Delgado J, Trujillo Rasúa R (2018) Algoritmo meta-heurístico Firefly aplicado al pre-entrenamiento de redes neuronales artificiales. Revista Cubana De Ciencias Informáticas 12(1):14–27

    Google Scholar 

  36. Glover F, Laguna M, Martí R (2000) Fundamentals of scatter search and path relinking. Control Cybern 29(3):653–684

    MathSciNet  MATH  Google Scholar 

  37. Glover F (1998) A template for scatter search and path relinking. Lect Notes Comput Sci 1363:13–54

    Google Scholar 

  38. Glover F, Laguna M, Martí R (2003) Scatter search. In: Advances in evolutionary computing. Springer, Berlin, pp 519–537

    Google Scholar 

  39. Nebro AJ, Luna F, Alba E, Dorronsoro B, Durillo JJ, Beham A (2008) AbYSS: adapting scatter search to multiobjective optimization. IEEE Trans Evol Comput 12(4):439–457

    Article  Google Scholar 

  40. Herrera F, Lozano M, Molina D (2006) Continuous scatter search: an analysis of the integration of some combination methods and improvement strategies. Eur J Oper Res 169(2):450–476

    Article  MathSciNet  Google Scholar 

  41. Luna Valero F (2008) Metaheurísticas avanzadas para problemas reales en redes de telecomunicaciones

    Google Scholar 

  42. Melián Batista MB (2003) Optimización metaheurística para la planificación de redes WDM

    Google Scholar 

  43. Deb K (2001) Multi-objective optimization using evolutionary algorithms, vol 16. Wiley, New York

    Google Scholar 

  44. Van Veldhuizen DA, Lamont GB (1998) Multiobjective evolutionary algorithm research: a history and analysis, pp. 1–88. Technical Report TR-98-03, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio

    Google Scholar 

  45. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evolut Comput 8(2):173–195

    Article  Google Scholar 

  46. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGAII. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  47. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength pareto evolutionary algorithm. Technical Report 103, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland

    Google Scholar 

  48. Delgadillo E (2013) Modelos y algoritmos para diseno de redes de comunicaciones con requisitos de supervivencia (Doctoral dissertation, Tesis de Licenciatura, Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires)

    Google Scholar 

  49. Festa P, Resende MG (2002) GRASP: an annotated bibliography. In: Essays and surveys in metaheuristics. Springer, Boston, pp 325–367

    Google Scholar 

  50. Barros B, Pinheiro R, Ochi L, Ramos G (2020) A GRASP approach for the minimum spanning tree under conflict constraints. In: Anais do XVI Encontro Nacional de Inteligência Artificial e Computacional. SBC, Jan 2020, pp 166–177

    Google Scholar 

  51. Gamvros I, Raghavan S, Golden B (2003) An evolutionary approach to the multi-level capacitated minimum spanning tree problem. In: Telecommunications network design and management. Springer, Boston, pp 99–124

    Google Scholar 

  52. Martins AX, de Souza MC, Souza MJ, Toffolo TA (2009) GRASP with hybrid heuristic-subproblem optimization for the multi-level capacitated minimum spanning tree problem. J Heurist 15(2):133–151

    Article  Google Scholar 

  53. Glover F (1977) Heuristics for integer programming using surrogate constraints. Decis Sci 8(1):156–166

    Article  Google Scholar 

  54. Baluja S (1994) Population-based incremental learning. A method for integrating genetic search based function optimization and competitive learning (No. CMU-CS-94–163). Carnegie-Mellon Univ Pittsburgh Pa Dept Of Computer Science

    Google Scholar 

  55. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading. NN Schraudolph and J, 3(1)

    Google Scholar 

  56. para el Diseño CDE, de Redes Inalámbricas OM. Mecánica Computacional, vol XXVIII, Number 31. Optimization and Control (A)

    Google Scholar 

  57. Odili JB, Noraziah A, Ambar R, Wahab MHA (2018) A critical review of major nature-inspired optimization algorithms. In: The Eurasia proceedings of science technology engineering and mathematics, vol 2, pp 376–394

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuevas, E., Rodríguez, A., Alejo-Reyes, A., Del-Valle-Soto, C. (2021). Metaheuristic Algorithms for Wireless Sensor Networks. In: Recent Metaheuristic Computation Schemes in Engineering. Studies in Computational Intelligence, vol 948. Springer, Cham. https://doi.org/10.1007/978-3-030-66007-9_7

Download citation

Publish with us

Policies and ethics