Skip to main content

Clustering Model Based on the Human Visual System

  • Chapter
  • First Online:
Recent Metaheuristic Computation Schemes in Engineering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 948))

Abstract

Clustering involves the process of dividing a collection of abstract objects into a number of groups, which are integrated with similar elements. Several clustering methods have been introduced and developed in the literature with different performance levels. Among such approaches, density algorithms present the best advantages, since they are able to find clusters from a dataset under different scales, shapes, and densities without requiring the number of groups as input. On the other hand, there are processes that humans perform much better than deterministic approaches or computers. In fact, humans can visually cluster data exceptionally well without the necessity of any training. Under this unique capability, clustering, instantaneous, and effortless for humans, represents a fundamental challenge for artificial intelligence. In this chapter, a simple clustering model inspired by the way in which the human visual system associates patterns spatially is presented. The model, at some abstraction level, can be characterized as a density grouping strategy. The approach is based on Cellular Neural Networks (CNNs), which have demonstrated to be the best models for emulating the human visual system. In the method, similar to the biological model, CNN is used to build especially groups while an automatic mechanism tries different resolution scales to find the best possible data categorization. Different datasets have been adopted to evaluate the performance of the algorithm. Their results are also compared with popular density clustering techniques from the literature. Computational results demonstrate that the CNN approach presents competitive results in comparison with other algorithms regarding accuracy and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques, Elsevier

    Google Scholar 

  2. He R, Li Q, Ai B, Geng YLA, Molisch AF, Kristem V, Zhong Z, Yu J (2017) A kernel-power-density-based algorithm for channel multipath components clustering. IEEE Trans Wireless Commun 16(11):7138–7151. https://doi.org/10.1109/TWC.2017.2740206

    Article  Google Scholar 

  3. Laohakiat S, Phimoltares S, Lursinsap C (2016) A clustering algorithm for stream data with lda-based unsupervised localized dimension reduction. Inf. Sci. 381:104–123

    Article  Google Scholar 

  4. Kisore NR, Koteswaraiah CB (2016) Improving atm coverage area using density based clustering algorithm and voronoi diagrams. Inf Sci 376:1–20

    Article  Google Scholar 

  5. Nguyen TT, Le HS (2015) HIFCF: an effective hybrid model between picture fuzzy clustering and intuitionistic fuzzy recommender systems for medical diagnosis. Expert Syst Appl 42(7):3682–3701

    Google Scholar 

  6. Jiao Y, Jianshe Wu, Jiao L (2018) An image segmentation method based on network clustering model. Phys A 490:1532–1542

    Article  MathSciNet  Google Scholar 

  7. Youcef D, Asma B, Philippe F-V, Jerry C-W, Lin (2018) Fast and effective cluster-based information retrieval using frequent closed itemsets. Inf Sci 453:154-167

    Google Scholar 

  8. Iván G, Grolmusz V (2014) On dimension reduction of clustering results in structural bioinformatics, Biochimica et Biophysica Acta (BBA)—proteins and proteomics 1844(12): 2277–2283

    Google Scholar 

  9. MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley symposium on mathematical statistics and probability, Berkeley, vol 1, University of California Press, pp 281–297

    Google Scholar 

  10. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York

    Book  Google Scholar 

  11. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  12. Kaufman L, Rousseeuw RJ (1990) Finding groups in data: an introduction to cluster analysis, Wiley

    Google Scholar 

  13. Camastra F, Verri A (2005) A novel kernel method for clustering. IEEE Trans Pattern Anal Mach Intell 27(5):801–805

    Article  Google Scholar 

  14. Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method for very large databases. In: SIGMOD Conference, pp 103–114

    Google Scholar 

  15. Guha S, Rastogi R, Shim K (1998) CURE: an efficient clustering algorithm for clustering large databases. In: Proceedings of the symposium on management of data (SIGMOD), pp 73–84

    Google Scholar 

  16. Karypis G, Han EH, Kumar V (1999) CHAMELEON: a hierarchical clustering algorithm using dynamic modeling. IEEE Comput 32(8):68–75

    Article  Google Scholar 

  17. Ester M, Kriegel H, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis E, Han J, Fayyad U (eds) Proceedings of the 2nd international conference on knowledge discovery and data mining (KDD-96), AAAI Press, pp 226–231

    Google Scholar 

  18. Ankerst M, Breunig M, Kriegel HP (1999) OPTICS: ordering points to identify the clustering structure. In: Proceedings of international conference on management of data (SIGMOD99), Philadelphia, PA, pp 49–60

    Google Scholar 

  19. Hinneburg A, Keim D (1998) An efficient approach to clustering in large multimedia databases with noise. In: Proceedings of the fourth international conference on knowledge discovery and data mining, New York, pp 58–65

    Google Scholar 

  20. Wang W, Yang J, Muntz R (1997) STING: a statistical information grid approach to spatial data mining. In: Proceedings of the 23rd international conference on very large data bases, Athens, Morgan Kaufmann, pp 18–195

    Google Scholar 

  21. Sheikholeslami G, Chatterjee S, Zhang AD (1998) Wavecluster: a multi-resolution clustering approach for very large spatial databases. In Gupta A, Shmueli O, Widom J (eds) Proceedings of the 24th international conference on very large data bases, Morgan Kaufmann, New York, pp 428–439

    Google Scholar 

  22. Andrew Y, Ng MI, Jordan Y (2001) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process Syst 14:849–856

    Google Scholar 

  23. Güngör E, Özmen A (2017) Distance, and density based clustering algorithm using Gaussian kernel. Expert Syst Appl 69:10–20

    Article  Google Scholar 

  24. Mark P (2014) Mattson, Superior pattern processing is the essence of the evolved human brain, Front. Neurosciences 8:265–278

    Google Scholar 

  25. Aguirre GK, Farah MJ (1998) Human visual object recognition: what have we learned from neuroimaging? Psychobiology 26(4):322–332

    Google Scholar 

  26. Wu BW, Fang YC (2015) Human vision model in relation to characteristics of shapes for the Mach band effect. Appl Opt 54(28):181–188

    Article  Google Scholar 

  27. Wilson JG, Mitchell RJ (2000) Object detecting artificial retina. Kybernetes 29(1):31–52

    Google Scholar 

  28. Akbas E, Eckstein MP (2017) Object detection through search with a foveated visual system. PLoS Comput Biol 13(10):1–28

    Article  Google Scholar 

  29. Zanker JM, Harris JP (2002) On temporal hyperacuity in the human visual system. Vision Res 42:2499–2508

    Article  Google Scholar 

  30. Lindeberg T (2013) A computational theory of visual receptive fields. Biol Cybern 107(6):589–635

    Article  MathSciNet  Google Scholar 

  31. Yang X, Li Y (2015) Contour extraction based on human visual system. In: Zha H, Chen X, Wang L, Miao Q (eds) Communications in computer and information science computer vision. CCCV 2015 (21015), vol 547. Springer, Berlin, Heidelberg

    Google Scholar 

  32. Carrasco M, Barbot A (2014) How attention affects spatial resolution. Cold Spring Harb Symp Quant Biol 79:149–160

    Article  Google Scholar 

  33. Chua LO, Yang L (1988) Cellular neural networks: theory. IEEE Trans Circuits Syst 35:1257–1272

    Article  MathSciNet  Google Scholar 

  34. Chua LO, Yang L (1988) Cellular neural networks: applications. IEEE Trans Circuits Syst 35:1273–1290

    Article  MathSciNet  Google Scholar 

  35. Li H, Liao X, Li C, Huang H, Li C (2011) Edge detection of noisy images based on cellular neural networks. Commun Nonlinear Sci Numer Simulat 16:3746–3759

    Article  MathSciNet  Google Scholar 

  36. Starkov SO, Lavrenkov YN (2017) Prediction of the moderator temperature field in a heavy water reactor based on a cellular neural network. Nuclear Energy Technol 3(2):133–140

    Article  Google Scholar 

  37. Lauret P, Heymes F, Aprin L, Johannet A (2016) Atmospheric dispersion modeling using Artificial Neural Network based cellular automata. Environ Modell Softw 85:56–69

    Article  Google Scholar 

  38. Fuxin Z, Guodong L, Wenxia X (2016) Xinjiang desertification disaster prediction research based on cellular neural networks. In: 2016 international conference on smart city and systems engineering (ICSCSE), pp 545–548

    Google Scholar 

  39. Shen S, Chang CH, Wang LC (2009) A cellular neural network and utility-based radio resource scheduler for multimedia CDMA communication systems. IEEE Trans Wireless Commun 8(11):5508–5519

    Google Scholar 

  40. Hou YY, Liao TL, Yan JJ (2007) Stability analysis of Takagi–Sugeno Fuzzy cellular neural networks with time-varying delays. IEEE Trans Syst Man Cybern Part B (Cybernetics) 37(3):720–726

    Google Scholar 

  41. Hu X, Feng G, Duan S, Liu L (2017) A memristive multilayer cellular neural network with applications to image processin. IEEE Trans Neural Netw Learning Syst 28(8):1889–1901

    Google Scholar 

  42. Huang CH, Lin CT (2007) Bio-Inspired computer fovea model based on hexagonal-type cellular neural network. IEEE Trans Circuits Syst I 54(1):35–47

    Google Scholar 

  43. Leon FWTR, Chua O (1995) The analogic cellular neural network as a bionic eye. Circuit Theory Appl 23(6):541–569

    Article  Google Scholar 

  44. Gál V, Hámori J, Roska T, Bálya D, Borostyánkői ZS, Brendel M, Lotz K, Négyessy L, Orzó L, Petrás I, Rekeczky CS, Takács J, Venetiáner P, Vidnyánszky Z, Zarándy Á (2004) Receptive field atlas and related cnn models. Int J Bifurcation Chaos 14(2):551–570

    Article  MathSciNet  Google Scholar 

  45. Chua LO, Roska T (2002) Cellular neural networks and visual computing, Cambridge University Press, Cambridge

    Google Scholar 

  46. Roska T, Hamori J, Labos E, Lotz K, Orzo L, Takacs J, Venetianer PL, Vidnyanszky Z, Zarandy A (1993) The use of CNN models in the subcortical visual pathway. IEEE Trans Circuits Syst I Fund Theory Appl 40(3):182–195

    Article  Google Scholar 

  47. Huang CH, Lin CT (2007) Bio-inspired computer fovea model based on hexagonal-type cellular neural network. IEEE Trans Circuits Syst I: Regular Papers 54(1): 35–47 (2007)

    Google Scholar 

  48. Rolfs M (2009) Microsaccades: Small steps on a long way. Vision Res 49(20):2415–2456

    Article  Google Scholar 

  49. Dimigen O, Valsecchi M, Sommer W, Kliegl R (2009) Human microsaccade-related visual brain responses. J Neurosci 29(39):12321–12331

    Article  Google Scholar 

  50. Gilli M, Corinto F, Civalleri PP (2003) Design and synthesis methods for cellular neural networks, In: Proceedings of the international joint conference on neural networks

    Google Scholar 

  51. Samet H, Tamminen M, (1988) Efficient component labeling of images of arbitrary dimension represented by linear bintrees. IEEE Trans Pattern Anal Mach Intell IEEE 10(4):579–589

    Google Scholar 

  52. https://github.com/deric/clustering-benchmark/tree/master/src/main/resources/datasets/artificial

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuevas, E., Rodríguez, A., Alejo-Reyes, A., Del-Valle-Soto, C. (2021). Clustering Model Based on the Human Visual System. In: Recent Metaheuristic Computation Schemes in Engineering. Studies in Computational Intelligence, vol 948. Springer, Cham. https://doi.org/10.1007/978-3-030-66007-9_6

Download citation

Publish with us

Policies and ethics