Skip to main content

Blood Vessel Segmentation Using Differential Evolution Algorithm

  • Chapter
  • First Online:
Recent Metaheuristic Computation Schemes in Engineering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 948))

Abstract

In the last years, medical image processing has become an important tool for health care. In particular, the analysis of retinal vessel images has become crucial for achieving a more accurate diagnosis and treatment for several cardiovascular and ophthalmological deceases. However, this task is extremely hard and time-consuming, often requiring human supervised segmentation of fundus images as well as some degree of professional skills. An automatic yet accurate procedure for retinal vessel segmentation is essential to assist ophthalmologists with illness detection. Several retinal vessel segmentation methods have been developed with satisfactory results. Nevertheless, the image preprocessing techniques implemented in this kind of procedure is known to have poor performance, mainly due to the complex nature of retinal vessel imaging. To improve the image preprocessing stage, a fast and accurate approach for retinal vessel segmentation is presented. This approach aims to enhance the contrast between retinal vessels and the image’s background by implementing a natural inspired technique called Lateral Inhibition (LI). Additionally, a cross-entropy minimization procedure based on Differential Evolution (DE) is applied to find the appropriate threshold and then used to define whether an image pixel is a vessel or non-vessel. The described method has been tested by considering two well-known image databases: DRIVE and STARE. The obtained results are compared against those of other related methods in order to prove the accuracy, effectiveness, and robustness of the presented approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qian Zhao Y, Hong Wang X, Fang Wang X, Shih FY (2014) Retinal vessels segmentation based on level set and region growing. Pattern Recognit 47(7):2437–2446s

    Google Scholar 

  2. Stanton AV et al (1995) Vascular network changes in the retina with age and hypertension. J Hypertens 13(12 Pt 2):1724–1728

    Google Scholar 

  3. Skovborg F, Nielsen AV, Lauritzen E, Hartkopp O (1969) Diameters of the retinal vessels in diabetic and normal subjects. Diabetes 18(5):292–298

    Google Scholar 

  4. Martinez-Perez ME, Hughes AD, Thom SA, Bharath AA, Parker KH (2007) Segmentation of blood vessels from red-free and fluorescein retinal images. Med Image Anal 11(1):47–61

    Article  Google Scholar 

  5. Lázár I, Hajdu A (2015) Segmentation of retinal vessels by means of directional response vector similarity and region growing. Comput Biol Med 66:209–221

    Article  Google Scholar 

  6. Fraz MM et al (2012) Blood vessel segmentation methodologies in retinal images—a survey. Comput Methods Progr Biomed 108(1):407–433

    Article  Google Scholar 

  7. Kirbas C, Quek F (2003) A review of vessel extraction techniques and algorithmss

    Google Scholar 

  8. Franklin SW, Rajan SE (2014) Retinal vessel segmentation employing ANN technique by Gabor and moment invariants-based features. Appl Soft Comput 22:94–100

    Article  Google Scholar 

  9. Wang S, Yin Y, Cao G, Wei B, Zheng Y, Yang G (2015) Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing 149:708–717

    Article  Google Scholar 

  10. Kande GB, Subbaiah PV, Savithri TS (2010) Unsupervised fuzzy based vessel segmentation in pathological digital fundus images. J Med Syst 34(5):849–858

    Article  Google Scholar 

  11. Lupaşcu CA, Tegolo D (2011) Automatic unsupervised segmentation of retinal vessels using self-organizing maps and K-means clustering. Springer, Berlin, Heidelberg, pp 263–274

    Google Scholar 

  12. Yin Y, Adel M, Bourennane S (2012) Retinal vessel segmentation using a probabilistic tracking method. Pattern Recognit 45(4):1235–1244

    Article  Google Scholar 

  13. Zhang J, Li H, Nie Q, Cheng L (2014) A retinal vessel boundary tracking method based on Bayesian theory and multiscale line detection. Comput Med Imaging Graph 38(6):517–525

    Article  Google Scholar 

  14. Zhang Y, Hsu W, Lee ML (2009) Detection of retinal blood vessels based on nonlinear projections. J Sig Process Syst 55(1–3):103–112

    Article  Google Scholar 

  15. Khdhair N, Abbadi E, Hamood E, Saadi A (2013) Blood vessels extraction using mathematical morphology. J Comput Sci Publ Online 9(910):1389–1395

    Google Scholar 

  16. Hassan G, El-Bendary N, Hassanien AE, Fahmy A, Abullah SM, Snasel V (2015) Retinal blood vessel segmentation approach based on mathematical morphology. Procedia Comput Sci 65:612–622

    Google Scholar 

  17. Kumar D, Pramanik A, Kar SS, Maity SP (2016) Retinal blood vessel segmentation using matched filter and Laplacian of Gaussian. In: International conference on signal processing and communications (SPCOM), pp 1–5

    Google Scholar 

  18. Zhang B, Zhang L, Zhang L, Karray F (2010) Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput Biol Med 40(4):438–445

    Article  Google Scholar 

  19. Ben Abdallah M et al (2015) Automatic extraction of blood vessels in the retinal vascular tree using multiscale medialness. Int J Biomed Imaging 2015:519024

    Google Scholar 

  20. Cuevas E, Sención-Echauri F, Zaldivar D, Pérez-Cisneros M (2012) Multi-circle detection on images using artificial bee colony (ABC) optimization. Soft Comput 16(2):281–296

    Article  Google Scholar 

  21. Oliva D, Cuevas E (2017) A medical application: blood cell segmentation by circle detection. Springer, Cham, pp 135–157

    Google Scholar 

  22. Oliva D, Hinojosa S, Cuevas E, Pajares G, Avalos O, Gálvez J (2017) Cross entropy based thresholding for magnetic resonance brain images using crow search algorithm. Expert Syst Appl 79:164–180

    Article  Google Scholar 

  23. González A, Cuevas E, Fausto F, Valdivia A, Rojas R (2017) A template matching approach based on the behavior of swarms of locust. Appl Intell, pp 1–12

    Google Scholar 

  24. Díaz P, Pérez-Cisneros M, Cuevas E, Hinojosa S, Zaldivar D (2018) An im-proved crow search algorithm applied to energy problems. Energies 11(3):571

    Article  Google Scholar 

  25. Cuevas E, Gálvez J, Hinojosa S, Zaldívar D (2014) Pérez-Cisneros, M, A com-parison of evolutionary computation techniques for IIR model identification. Journal of Applied Mathematics 2014:827206

    Article  Google Scholar 

  26. Valdivia-Gonzalez A, Zaldívar D, Fausto F, Camarena O, Cuevas E, Perez-Cisneros M (2017) A states of matter search-based approach for solving the problem of intelligent power allocation in plug-in hybrid electric vehicles. Energies 10(1):92

    Article  Google Scholar 

  27. Yang Y, Wang Z, Yang B, Jing Z, Kang Y (2017) Multiobjective optimization for fixture locating layout of sheet metal part using SVR and NSGA-II. Math Probl Eng 2017:1–10

    Google Scholar 

  28. Zhang H, Dai Z, Zhang W, Zhang S, Wang Y, Liu R (2017) A new energy-aware flexible job shop scheduling method using modified biogeography-based optimization. Math Probl Eng 2017:1–12

    MathSciNet  MATH  Google Scholar 

  29. Pang C, Huang S, Zhao Y, Wei D, Liu J (2017) Sensor network disposition facing the task of multisensor cross cueing. Math Probl Eng 2017:1–8

    Google Scholar 

  30. Kóczy LT, Földesi P, Tüű-Szabó B (2017) An effective discrete bacterial memetic evolutionary algorithm for the traveling salesman problem. Int J Intell Syst 32(8):862–876

    Article  Google Scholar 

  31. Céspedes-Mota A et al (2016) Optimization of the distribution and localization of wireless sensor networks based on differential evolution approach. Math Probl Eng 2016:1–12

    Article  MathSciNet  Google Scholar 

  32. Lai L, Ji Y-D, Zhong S-C, Zhang L (2017) Sequential parameter identification of fractional-order duffing system based on differential evolution algorithm. Math Probl Eng 2017:1–13

    Article  MathSciNet  Google Scholar 

  33. Bhattacharyya S, Konar A, Tibarewala DN (2014) A differential evolution based energy trajectory planner for artificial limb control using motor imagery EEG signal. Biomed Sig Process Control 11(1):107–113

    Article  Google Scholar 

  34. Elsayed S, Sarker R (2016) Differential evolution framework for big data optimization. Memetic Comput 8(1):17–33

    Google Scholar 

  35. Rahebi J, Hardalaç F (2014) Retinal blood vessel segmentation with neural network by using gray-level co-occurrence matrix-based features. J Med Syst 38(8):85

    Article  Google Scholar 

  36. Zheng Y, Kwong MT, Maccormick IJC, Beare NAV, Harding SP (2014) A comprehensive texture segmentation framework for segmentation of capillary non-perfusion regions in fundus fluorescein angiograms. PLoS One 9(4)

    Google Scholar 

  37. Bai X, Zhou F, Xue B (2012) Image enhancement using multi scale image features extracted by top-hat transform. Opt Laser Technol 44(2):328–336

    Article  Google Scholar 

  38. Salazar-Gonzalez A, Kaba D, Li Y, Liu X (2014) Segmentation of the blood vessels and optic disk in retinal images. IEEE J Biomed Heal Inform 18(6):1874–1886

    Google Scholar 

  39. Soares JVB, Leandro JJG, Cesar RM, Jelinek HF, Cree MJ (2006) Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imaging 25(9):1214–1222

    Article  Google Scholar 

  40. Bai X, Zhou F (2010) Multi structuring element top-hat transform to detect linear features. In: IEEE 10th international conference on signal processing proceedings, pp 877–880

    Google Scholar 

  41. Hartline HK (1938) The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am J Physiol Leg Content 121(2)

    Google Scholar 

  42. Li B, Li Y, Cao H, Salimi H (2016) Image enhancement via lateral inhibition: an analysis under illumination changes. Optik (Stuttg) 127:5078–5083

    Article  Google Scholar 

  43. Fang Z, Dawei Z, Ke Z (2007) Image pre-processing algorithm based on lateral inhibition. In: 2007 8th international conference on electronic measurement and instruments, 2007, pp 2-701-2–705s

    Google Scholar 

  44. Coren JS, Girgus S (1978) Seeing is deceiving: the psychology of visual illusions. Lawrence Erlbaum, Hillsdale. References—Scientific Research Publish

    Google Scholar 

  45. Liu F, Duan H, Deng Y (2012) A chaotic quantum-behaved particle swarm optimization based on lateral inhibition for image matching. Opt Int J Light Electron Opt 123(21):1955–1960

    Google Scholar 

  46. Wang X, Duan H, Luo D (2013) Cauchy biogeography-based optimization based on lateral inhibition for image matching. Optik (Stuttg) 124(22):5447–5453

    Article  Google Scholar 

  47. Kullback S (1968) Information theory and statistics. Dover Publications

    Google Scholar 

  48. Li CH, Lee CK (1993) Minimum cross-entropy thresholding. Pattern Recognit 26(4):617–625

    Article  Google Scholar 

  49. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    Article  MathSciNet  Google Scholar 

  50. Schmitt LM (2001) Theory of genetic algorithms. Theor Comput Sci 259(1):1–61

    Article  MathSciNet  Google Scholar 

  51. Yang X-S (2014) Nature-inspired optimization algorithms. In: Nature-inspired optimization algorithms

    Google Scholar 

  52. Staal J, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509

    Article  Google Scholar 

  53. Hoover AD, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210

    Article  Google Scholar 

  54. Jiang X, Mojon D (2003) Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans Pattern Anal Mach Intell 25(1):131–137

    Google Scholar 

  55. Câmara Neto L, Ramalho GLB, Rocha Neto JFS, Veras RMS, Medeiros FNS (2017) An unsupervised coarse-to-fine algorithm for blood vessel segmentation in fundus images. Expert Syst Appl 78(C):182–192s

    Google Scholar 

  56. Rezaee K, Haddadnia J, Tashk A (2017) Optimized clinical segmentation of retinal blood vessels by using combination of adaptive filtering, fuzzy entropy and skeletonization. Appl Soft Comput J 52:937–951

    Article  Google Scholar 

  57. Rodrigues LC, Marengoni M (2017) Segmentation of optic disc and blood vessels in retinal images using wavelets, mathematical morphology and Hessian-based multiscale filtering. Biomed Sig Process Control 36:39–49

    Article  Google Scholar 

  58. Marín D, Aquino A, Gegundez-Arias ME, Bravo JM (2011) A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Med Imaging 30(1):146–158

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuevas, E., Rodríguez, A., Alejo-Reyes, A., Del-Valle-Soto, C. (2021). Blood Vessel Segmentation Using Differential Evolution Algorithm. In: Recent Metaheuristic Computation Schemes in Engineering. Studies in Computational Intelligence, vol 948. Springer, Cham. https://doi.org/10.1007/978-3-030-66007-9_5

Download citation

Publish with us

Policies and ethics