Skip to main content

Corner Detection Algorithm Based on Cellular Neural Networks (CNN) and Differential Evolution (DE)

  • Chapter
  • First Online:
Recent Metaheuristic Computation Schemes in Engineering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 948))

Abstract

Corner detection represents one of the most important steps to identify features in images. Due to their powerful local processing capabilities, Cellular Nonlinear/Neural Networks (CNN) are commonly utilized in image processing applications such as image edge detection, image encoding and image hole filling. CNN perform well for locating corner features in binary images. However, their use in grayscale images has not been considered due to their design difficulties. In this chapter, a corner detector based on CNN for grayscale images is presented. In the approach, the original processing scheme of the CNN is modified to include a nonlinear operation for increasing the contrast of the local information in the image. With this adaptation, the final CNN parameters that allow the appropriate detection of corner points are estimated through the Differential evolution algorithm by using standard training images. Different test images have been used to evaluate the performance of the presented corner detector. Its results are also compared with popular corner methods from the literature. Computational simulations demonstrate that the presented CNN approach presents competitive results in comparison with other algorithms in terms of accuracy and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rublee E, Rabaud V, Konolige K, Bradski G (2011) ORB: An efficient alternative to SIFT or SURF. In: 2011 IEEE international conference on computer vision (ICCV), 2011 Nov 6. IEEE, pp 2564–2571

    Google Scholar 

  2. Yali L, Shengjin W, Qi T, Xiaoqing D (2015) A survey of recent advances in visual feature detection. Neurocomputing 149:736–751

    Article  Google Scholar 

  3. Cui J, Xie J, Liu T, Guo X, Chen Z (2014) Corners detection on finger vein images using the improved Harris algorithm. Optik 125:4668–4671

    Article  Google Scholar 

  4. Kitti T, Jaruwan T, Chaiyapon T (2012) An object recognition and identification system using the Harris Corner detection method

    Google Scholar 

  5. Zhou Z, Yan M, Chen S (2015) Image registration and stitching algorithm of rice low-altitude remote sensing based on Harris corner self-adaptive detection . Nongye Gongcheng Xuebao/Trans Chin Soc Agric Eng 31(14):186–193

    Google Scholar 

  6. Bagchi P, Bhattacharjee D, Nasipuri M (2015) A robust analysis detection and recognition of facial features in 2.5D images. Multimedia Tools Appl 75(18):1–38s

    Google Scholar 

  7. Rosten E, Drummond T (2006) Machine learning for high-speed corner detection. In: European conference on computer vision, 2006 May 7. Springer Berlin, Heidelberg, pp 430–443

    Google Scholar 

  8. Harris C, Stephens M (1988) A combined corner and edge detector. In: Alvey vision conference, vol. 15. Citeseer, 50

    Google Scholar 

  9. Mikolajczyk K, Schmid C (2004) Scale and affine invariant interest point detectors. Int J Comput Vis 60(1):6386–6396

    Article  Google Scholar 

  10. Smith SM, Brady JM (1997) Susan a newapproach to lowlevel image processing. Int J Comput Vis 23(1):4578–4589

    Article  Google Scholar 

  11. He XC, Yung NHC (2008) Corner detector based on global and local curvature properties. Opt Eng 47(5):057008

    Article  Google Scholar 

  12. Awrangjeb M, Lu G (2008) Robust image corner detection based on the chord-to-point distance accumulation technique. IEEE Trans Multimedia 10(6):1059–1072

    Google Scholar 

  13. Shui P-L, Zhang W-C (2013) Corner detection and classification using anisotropic directional derivative representations. IEEE Trans Image Proces 22(8):3204–3219

    Article  Google Scholar 

  14. Zhang W, Shui P-L (2015) Contour-based corner detection via angle difference of principal directions of anisotropic Gaussian directional derivatives. Pattern Recogn 48:2785–2797

    Article  Google Scholar 

  15. Lowe D (2004) Distinctive image features from scale-invariant key points. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  16. Bay H, Ess A, Tuytelaars T, Gool LV (2008) Surf: speeded up robust features. Comput Vis Image Underst 110(3):346–359

    Article  Google Scholar 

  17. Yi KM, Trulls E, Lepetit V, Fua P (2016) Lift: learned invariant feature transform. In: European conference on computer vision. Springer

    Google Scholar 

  18. Rosten E, Drummond T (2006) Machine learning for high-speed corner detection. In: Computer vision ECCV. Springer, pp 430–443

    Google Scholar 

  19. Schönberger JL, Hans H, Torsten S, Marc P (2017) Comparative evaluation of hand-crafted and learned local features. Computer vision and pattern recognition (CVPR)

    Google Scholar 

  20. Chua LO, Yang L (1988) Cellular neural networks: theory. IEEE Trans Circ Syst 35:1257–1272

    Article  MathSciNet  Google Scholar 

  21. Chua LO (1997) CNN: a version of complexity. Int J Bifurc Chaos 7(10):2219–2425

    Google Scholar 

  22. Li H, Liao X, Li C, Huang H, Li C (2011) Edge detection of noisy images based on cellular neural networks. Commun Nonlinear Sci Numer Simulat 16:3746–3759

    Article  MathSciNet  Google Scholar 

  23. Liu Z, Schurz H, Ansari N, Wang Q (2012) Theoretic design of differential minimax controllers for stochastic cellular neural networks. Neural Netw 26:110–117

    Article  Google Scholar 

  24. Chatziagorakis P, Georgios Ch, Sirakoulis, Lygouras JN (2012) Design automation of cellular neural networks for data fusion applications. Microprocess Microsyst 36(1):33–44

    Google Scholar 

  25. Starkov SO, Lavrenkov YN (2017) Prediction of the moderator temperature field in a heavy water reactor based on a cellular neural network. Nucl Energy Technol 3(2):133–140

    Article  Google Scholar 

  26. Hu X, Feng G, Duan S, Liu L (2017) A memristive multilayer cellular neural network with applications to image processing. IEEE Trans Neural Netw Learn Syst 28(8):1889–1901

    Google Scholar 

  27. Ando T, Uwate Y, Nishio Y (2017) Image processing by cellular neural networks with switching two templates. In: 2017 IEEE Asia pacific conference on postgraduate research in microelectronics and electronics (PrimeAsia), pp 41–44

    Google Scholar 

  28. Morales-Romero JJ, Gómez-Castañeda F, Moreno-Cadenas JA, Reyes-Barranca MA, Flores-Nava MA (2017) Time-multiplexing cellular neural network in FPGA for image processing. In: 2017 14th international conference on electrical engineering, computing science and automatic Control (CCE), pp 1–5

    Google Scholar 

  29. Adhikari SP, Kim H, Yang C, Chua LO (2018) Building cellular neural network templates with a hardware friendly learning algorithm. Neurocomputing 312:276–284

    Google Scholar 

  30. Chua L, Roska T (2004) Cellular neural networks and visual computing: foundation and applications. Cambridge University Press

    Google Scholar 

  31. Harrer H, Nossek JA, Roska T, Chua LO (199) A current-mode DTCNN universal chip. In: Proceedings of IEEE international symposium on circuits and systems, pp 135–138

    Google Scholar 

  32. Cruz JM, Chua LO, Roska T (1994) A fast, complex and efficient test implementation of the CNN universal machine. In: Proceedings of 3th IEEE international workshop on cellular neural networks and their application. Rome, pp 61–66

    Google Scholar 

  33. Roska T, Chua LO (1993) The CNN universal machine: an analogic array computer. IEEE Trans Circ Syst II 40(3):163–173

    Article  Google Scholar 

  34. Crounse KR, Chua LO (1995). Methods for image processing and pattern formation in cellular neural networks: a tutorial. IEEE Trans Circ Syst I Fundam Theory Appl 42(10):583–601

    Google Scholar 

  35. Matsumoto T, Chua LO, Furukawa R (1990) CNN cloning template: Hole filler. IEEE Trans Circ Syst I Fundam Theory Appl 37(5):635–638

    Google Scholar 

  36. Wang L, Zhang J, Shao H (2014) Existence and global stability of a periodic solution for a cellular neural network. Commun Nonlinear Sci Numer Simul 19(9):2983–2992

    Article  MathSciNet  Google Scholar 

  37. Zheng C-D, Jing X-T, Wang Z-S, Feng J (2010) Further results for robust stability of cellular neural networks with linear fractional uncertainty. Commun Nonlinear Sci Numer Simul 15(10):3046–3057

    Article  MathSciNet  Google Scholar 

  38. Chedjou JC, Kyamakya K (2015) A universal concept based on cellular neural networks for ultrafast and flexible solving of differential equations. IEEE Trans Neural Netw Learn Syst 26(4):749–762

    Google Scholar 

  39. Baştürk A, Günay E (2009) Efficient edge detection in digital images using a cellular neural network optimized by differential evolution algorithm. Expert Syst Appl 36:2645–2650

    Article  Google Scholar 

  40. Li J, Peng Z (2015) Multi-source image fusion algorithm based on cellular neural networks with genetic algorithm. Opt Int J Light Electron Opt 126(24):5230–5236

    Google Scholar 

  41. Cuevas E, Gálvez J, Hinojosa S, Zaldívar D, Pérez-Cisneros M (2014) A comparison of evolutionary computation techniques for IIR model identification. J Appl Maths 827206

    Google Scholar 

  42. Giaquinto A, Fornarelli G (2009) PSO-Based cloning template design for CNN associative memories. IEEE Trans Neural Netw 20(11):1837–1841

    Article  Google Scholar 

  43. Díaz P, Pérez-Cisneros M, Cuevas E, Hinojosa S, Zaldivar D (2018) An improved crow search algorithm applied to energy problems. Energies 11(3):571

    Article  Google Scholar 

  44. Storn R, Price K (1995) Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Rep. No. TR-95-012, International Computer Science Institute, Berkley

    Google Scholar 

  45. Bureerat S, Pholdee N (2018) Inverse problem based differential evolution for efficient structural health monitoring of trusses. Appl Soft Comput 66:462–472

    Article  Google Scholar 

  46. Yang Y-H, Xian-Bin Xu, He S-B, Wang J-B, Wen Y-H (2018) Cluster-based niching differential evolution algorithm for optimizing the stable structures of metallic clusters. Comput Mater Sci 149:416–423

    Article  Google Scholar 

  47. Suganthi ST, Devaraj D, Ramar K, Hosimin Thilagar S (2018) An improved differential evolution algorithm for congestion management in the presence of wind turbine generators. Renew Sustain Energy Rev 81, Part 1:635–642

    Google Scholar 

  48. Guedes JJ, Favoretto Castoldi M, Goedtel A, Marcos Agulhari C, Sipoli Sanches D (2018) Parameters estimation of three-phase induction motors using differential evolution. Electr Power Syst Res 154:204–212

    Google Scholar 

  49. Maggi S (2017) Estimating water retention characteristic parameters using differential evolution. Comput Geotech 86:163–172

    Article  Google Scholar 

  50. Chua LO, Roska T, Kozek T, Zarandy A (1993) The CNN paradigm, cellular neural networks. Baffins Lane, Chichester, West Sussex PO191UD. Wiley, England

    Google Scholar 

  51. Price KV (1996) Differential evolution: a fast and simple numerical optimizer. In: IEEE biennial conference of the North American fuzzy information processing society, NAFIPS. Berkeley, CA, pp 524–527

    Google Scholar 

  52. Price KV, Storn RM, Lampinen J (2005) Differential evolution: a practical approach to global optimization. Springer, Berlin

    MATH  Google Scholar 

  53. Hua X, Fenga G, Duanb S, Liu L (2015) Multilayer RTD-memristor-based cellular neural networks for color image processing. Neurocomputing 162:150–162

    Google Scholar 

  54. Douglas DH, Peucker TK (1973) Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can Cartogr 10(2):112–122

    Article  Google Scholar 

  55. Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Van Gool L (2005) A comparison of affine region detectors. Int J Comput Vis 65(1–2):43–72

    Article  Google Scholar 

  56. Schmid C, Mohr R, Bauckhage C (2000) Evaluation of interest point detectors. Int J Comput Vis 37(2):151–172

    Google Scholar 

  57. Bowyer K, Kranenburg C, Dougherty S (1999) Edge detector evaluation using empirical ROC curves. In: IEEE conference on computer vision and pattern recognition, 1, pp 354—359

    Google Scholar 

  58. Bilotta E, Pantano P, Vena S (2017) Speeding up cellular neural network processing ability by embodying memristors. IEEE Trans Neural Netw Learn Systs 28(5):1228–1232

    Article  Google Scholar 

  59. Zarandy A (1999) The art of CNN template design. Int J Circ Theory Appl 27(1):5–23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuevas, E., Rodríguez, A., Alejo-Reyes, A., Del-Valle-Soto, C. (2021). Corner Detection Algorithm Based on Cellular Neural Networks (CNN) and Differential Evolution (DE). In: Recent Metaheuristic Computation Schemes in Engineering. Studies in Computational Intelligence, vol 948. Springer, Cham. https://doi.org/10.1007/978-3-030-66007-9_4

Download citation

Publish with us

Policies and ethics