Skip to main content

Magma Emplacement and Accumulation: From Sills to Magma Chambers

  • Chapter
  • First Online:
Volcano-Tectonic Processes

Part of the book series: Advances in Volcanology ((VOLCAN))

  • 1827 Accesses

Abstract

The previous chapter has discussed the rise of magma throughout the crust. This fourth chapter focuses on the arrest, emplacement and accumulation of magma. These are indeed primary and widespread processes at volcanoes, as most of the rising magma remains stalled in the crust, with only a fraction being erupted (approximately one tenth; e.g., Shaw 1985; White et al. 2006). Moreover, the accumulated magma may develop magma chambers, whose dynamics can be detected to define the state of active volcanoes, also providing a warning for forecasting any impending eruption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acocella V (2000) Space accommodation by roof lifting during pluton emplacement at Amiata (Italy). Terra Nova 12:149–155

    Google Scholar 

  • Acocella V, Rossetti F (2002) The role of extensional tectonics at different crustal levels on granite ascent and emplacement: an example from Tuscany (Italy). Tectonophysics 354:71–83

    Google Scholar 

  • Airoldi G, Muirhead JD, Zanella E, White JDL (2012) Emplacement process of Ferrar Dolerite sheets at Allan Hills (South Victoria Land, Antarctica) inferred from magnetic fabric. Geophys J Int 188:1046–1060

    Google Scholar 

  • Albertz M, Paterson SR, Okaya D (2005) Fast strain rates during pluton emplacement: Magmatically folded leucocratic dikes in aureoles of the Mount Stuart Batholith, Washington, and the Tuolumne Intrusive Suite, California. Geol Soc Am Bull 117:450–465

    Google Scholar 

  • Allan ASR, Wilson CJN, Millet M-A, Wysoczanski RJ (2012) The invisible hand: tectonic triggering and modulation of a rhyolitic supereruption. Geology 40:563–566

    Google Scholar 

  • Albino F, Amelung F, Gregg P (2018) The role of pore fluid pressure on the failure of magma reservoirs: Insights from Indonesian and Aleutian arc volcanoes. J Geophys Res 123:1328–1349

    Google Scholar 

  • Amoruso A, Crescentini L, Sabbetta I (2014) Paired deformation sources of the Campi Flegrei caldera (Italy) required by recent (1980–2010) deformation history. J Geophys Res 119:3276–3289

    Google Scholar 

  • Amoruso A, Crescentini L, D’Antonio M, Acocella V (2017) Thermally-assisted magma emplacement explains restless calderas. Scientific Reports 7:7948. https://doi.org/10.1038/s41598-017-08638-y

    Article  Google Scholar 

  • Amoruso A, Crescentini L (2019) An approximate approach to nonisothermal emplacement of kilometer-sized kilometer-deep sills at calderas. J Geophys Res 124:1236–1253

    Google Scholar 

  • Andersen NL, Singer BS, Jicha BR, Beard BL, Johnson CM, Licciardi JM (2017) Pleistocene to Holocene Growth of a Large Upper Crustal Rhyolitic Magma Reservoir beneath the Active Laguna del Maule Volcanic Field, Central Chile. J Petrol 58:85–114

    Google Scholar 

  • Annen C (2009) From plutons to magma chambers: Thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet Sci Lett 294:409–416

    Google Scholar 

  • Annen C, Blundy JD, Leuthold J, Sparks RSJ (2015) Construction and evolution of igneous bodies: Towards an integrated perspective of crustal magmatism. Lithos 230:206–221

    Google Scholar 

  • Aranguren A, Tubia JM, Bouchez JL, Vigneresse JL (1996) The Guitiriz granite, Variscan belt of Northern Spain: extension-controlled emplacement of magma during tectonic escape. Earth Planet Sci Lett 139:165–176

    Google Scholar 

  • Aranguren A, Cuevas J, Tubia JM, Roman-Berdiel T, Casas-Sainz A, Casas-Ponsati A (2003) Granite laccolith emplacement in the Iberian arc: AMS and gravity study of the La Tojiza pluton (NW Spain). J Geol Soc 160:435–445

    Google Scholar 

  • Auger E, Gasparini P, Virieax J, Zollo A (2001) Seismic Evidence of an Extended Magmatic Sill Under Mt Vesuvius. Science 294:1510–1512

    Google Scholar 

  • Bachmann O, Miller CF, de Silva S (2007) The volcanic–plutonic connection as a stage for understanding crustal magmatism. J Volcanol Geoth Res 167:1–23

    Google Scholar 

  • Bachmann O, Bergantz J (2008) The magma reservoirs that feed supereruptions. Elements 4:17–21

    Google Scholar 

  • Bai C, Greenlangh S (2005) 3D multi-step travel time tomography: imaging the local, deep velocity structure of Rabaul volcano, Papua New Guinea. Phys Earth Planet Inter 151:259–275

    Google Scholar 

  • Barboni M, Schoene B (2014) Short eruption window revealed by absolute crystal growth rates in a granitic magma. Nat Geosci 7:524–528

    Google Scholar 

  • Barker SJ, Wilson CJN, Morgan DJ, Rowland JV (2016) Rapid priming, accumulation, and recharge of magma driving recent eruptions at a hyperactive caldera volcano. Geology 44:323–326

    Google Scholar 

  • Bartley JM, Coleman DS, Glazner AF (2006) Incremental pluton emplacement by magmatic crack-seal. Transactions of the Royal Society of Edinburgh. Earth Sciences 97:383–396

    Google Scholar 

  • Beachly MW, Hooft EEE, Toomey DR, Waite GP (2012) Upper crustal structure of Newberry Volcano from P-wave tomography and finite difference waveform modeling. J Geophys Res 117. https://doi.org/10.1029/2012JB009458

  • Biggs J, Annen C (2019) The lateral growth and coalescence of magma systems. Philosophical Transactions Royal Society a 377:20180005

    Google Scholar 

  • Blundy JD, Annen CJ (2016) Crustal magmatic systems from the perspective of heat transfer. Elements 12:115–120

    Google Scholar 

  • Brown EH, McClelland WC (2000) Pluton emplacement by sheeting and vertical ballooning in part of the southeast Coast Plutonic Complex, British Columbia. Geol Soc Am Bull 112:708–719

    Google Scholar 

  • Brown M (2013) Granite: From genesis to emplacement. Geol Soc Am Bull 125:1079–1113

    Google Scholar 

  • Bunger AP, Cruden AR (2011) Modeling the growth of laccoliths and large mafic sills: Role of magma body forces. J Geophys Res 116:B02203. https://doi.org/10.1029/2010JB007648

    Article  Google Scholar 

  • Cashman KV, Sparks RSJ, Blundy JD (2017) Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355:1280

    Google Scholar 

  • Castro JM, Cordonnier B, Schipper CI, Tuffen H, Baumann TS, Feisel Y (2016) Rapid laccolith intrusion driven by explosive volcanic eruption. Nature Communications 7:13585. https://doi.org/10.1038/ncomms13585

    Article  Google Scholar 

  • Chanceaux L, Menand T (2014) Solidification effects on sill formation: an experimental approach. Earth Planet Sci Lett 403:79–88

    Google Scholar 

  • Chanceaux L, Menand T (2016) The effects of solidification on sill propagation dynamics and morphology. Earth Planet Sci Lett 442:39–50

    Google Scholar 

  • Chang WL, Smith RB, Wicks C, Farrell JM, Puskas CM (2007) Accelerated uplift and magmatic intrusion of the Yellowstone Caldera, 2004 to 2006. Science 318:952–956

    Google Scholar 

  • Chaussard E, Amelung F (2012) Precursory inflation of shallow magma reservoirs at west Sunda volcanoes detected by InSAR. Geophys Res Lett 39:L21311. https://doi.org/10.1029/2012GL053817

    Article  Google Scholar 

  • Ciancaleoni L, Marquer D (2006) Syn-extension leucogranite deformation during convergence in the Eastern Central Alps: example of the Novate intrusion. Terra Nova 18:170–180

    Google Scholar 

  • Coetzee A, Kisters AFM (2018) The elusive feeders of the Karoo Large Igneous Province and their structural controls. Tectonophysics 747–748:146–162

    Google Scholar 

  • Coleman DS, Mills RD, Zimmerer RJ (2016) The Pace of Plutonism. Elements 12:97–102

    Google Scholar 

  • Collins WJ, Wuang H-Q, Jiang X (2016) Water-fluxed crustal melting produces Cordilleran batholiths. Geology 44:143–146

    Google Scholar 

  • Corry CE (1988) Laccoliths: mechanics sof emplacement and growth. Geological Society of America Special Publications 220:110

    Google Scholar 

  • Corti G, Moratti G, Sani F (2005) Relations between surface faulting and granite intrusions in analogue models of strike-slip deformation. J Struct Geol 27:1547–1562

    Google Scholar 

  • Cruden AR (1998) On the emplacement of tabular granites. J Geol Soc London 155:853–862

    Google Scholar 

  • Cruden AR, McCaffrey KJW (2001) Growth of Plutons by floor subsidence: implications for rates of emplacement, intrusion spacing and melt-extraction mechanisms. Phys Chem Earth 26:303–315

    Google Scholar 

  • Cruden AR, McCaffrey KJW, Bunger AP (2017) Geometric scaling of tabular igneous intrusions: implications for emplacement and growth. In: Bretkreuz C, Rocchi S Physical geology of shallow magmatic systems; dykes, sills and laccoliths. advances in volcanology Springer, vol 2, pp 11–38

    Google Scholar 

  • Currier RM, Marsh BD (2015) Mapping real time growth of experimental laccoliths: the effect of solidification on the mechanics of magmatic intrusion. J Volcanol Geoth Res 302:211–224

    Google Scholar 

  • Currier RM, Forsythe P, Grossmeier C, Laliberte M, Yagle B (2017) Experiments on the evolution of laccolith morphology in plan-view. J Volcanol Geoth Res 336:155–167

    Google Scholar 

  • Davis JW, Coleman DE, Gracely JT, Gaschnig R, Stearns M (2012) Magma accumulation rates and thermal histories of plutons of the Sierra Nevada batholith, CA. Contrib Miner Petrol 163:449–465

    Google Scholar 

  • D’Auria L, Pepe S, Castaldo R, Giudicepietro F, Macedonio G, Ricciolino P et al (2015) Magma injection beneath the urban area of Naples: a new mechanism for the 2012–2013 volcanic unrest at Campi Flegrei caldera. Scientific Reports 5. https://doi.org/10.1038/srep13100

  • de Saint Blanquat M, Tikoff B, Teyssier C, Vigneresse JL (1998) Transpressional kinematics and magmatic arcs. In: Holdsworth RE, Strachan RA, Dewey JF (eds) 1998. Continental transpressional and transtensional tectonics. Geological Society of London Special Publications, vol 135, pp 327–340

    Google Scholar 

  • de Saint Blanquat M, Law RD, Bouchez JL, Morgan SS (2001) Internal structure and emplacement of the Papoose Flat pluton: an integrated structural, petrographic and magnetic susceptibility study. Geol Soc Am Bull 113:976–995

    Google Scholar 

  • de Saint Blanquat M, Habert G, Horsman E, Morgan SS, Tikoff B, Pauneau P et al (2006) Mechanisms and duration of non-tectonically assisted magma emplacement in the upper crust: The Black Mesa pluton, Henry Mountains, Utah. Tectonophysics 428:1–31

    Google Scholar 

  • de Saint Blanquat M, Horsman E, Habert G, Morgan S, Vanderhaeghe O, Law R et al (2011) Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics 500:20–33

    Google Scholar 

  • de Silva SL, Gosnold WD (2007) Episodic construction of batholiths: insights from the spatiotemporal development of an ignimbrite flare-up. J Volcanol Geoth Res 167:320–335

    Google Scholar 

  • Delaney PT, Pollard DD (1982) Solidification of basaltic magma during flow in a dike. Am J Sci 282:856–885

    Google Scholar 

  • Druitt TH, Costa F, Deloule E, Dungan M, Scaillet B (2012) Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482:77–83

    Google Scholar 

  • Dvorak JJ, Dzurisin DD (1997) Volcano geodesy: the search for magma reservoirs and the formation of eruptive vents. Rev Geophys 35:343–384

    Google Scholar 

  • Dzurisin DD, Lisowski M, Wicks CW, Poland MP, Endo ET (2006) Geodetic observations and modeling of magmatic inflation at the Three Sisters volcanic center, central Oregon Cascade Range, USA. J Volcanol Geoth Res 150:35–54

    Google Scholar 

  • Eddy MP, Bowring SA, Miller RB, Tepper JH (2016) Rapid assembly and crystallization of a fossil large-volume silicic magma chamber. Geology 44:331–334

    Google Scholar 

  • Edmonds M, Cashman KV, Holness M, Jackson M (2019) Architecture and dynamics of magma reservoirs. Philosophical Trans Royal Soc 377:20180298

    Google Scholar 

  • Famin V, Michon L (2010) Volcano destabilization by magma injections in a detachment. Geology 38:219–222

    Google Scholar 

  • Fernandez C, Castro A (1999) Pluton accommodation at high strain rates in the upper continental crust. The example of the Central Extremadura batholith Spain. J Struct Geol 21:1143–1149

    Google Scholar 

  • Fialko Y, Simons M (2001) Evidence for on-going inflation of the Socorro magma body, New Mexico, from Interferometric Synthetic Aperture Radar imaging. Geophys Res Lett 28:3549–3552

    Google Scholar 

  • Gaillard F, Scaillet B, Pichavant M (2004) Evidence for present-day leucogranite pluton growth in Tibet. Geology 32:801–804

    Google Scholar 

  • Galetto F, Acocella V, Caricchi L (2017) Caldera resurgence driven by magma viscosity contrasts. Nature Communications 8:1750. https://doi.org/10.1038/s41467-017-01632-y

    Article  Google Scholar 

  • Galland O, Bertelsen HS, Eide CH, Guldstrand F, Haug OT, Leanza HA (2018) Storage and transport of magma in the layered crust—formation of sills and related flat-lying intrusions. In: Burchardt S (ed) Volcanic and igneous plumbing systems; understanding magma transport, storage, and evolution in the earth’s crust. Elsevier, pp 113–138

    Google Scholar 

  • Gelman SE, Gutierrez F, Bachmann O (2013a) On the longevity of large upper crustal silicic magma reservoirs. Geology 41:759–762

    Google Scholar 

  • Gelman SE, Deering CD, Gutierrez FJ, Bachmann O (2013b) Evolution of the Taupo Volcanic Center, New Zealand: petrological and thermal constraints from the Omega dacite. Contributions in Mineralogy and Petrology 166:1355–1374

    Google Scholar 

  • Gilbert GK (1877) Report on the geology of the Henry Mountains. U.S, Government Printing Office Washington DC

    Google Scholar 

  • Gill SPA, Walker RJ (2020) The roles of elastic properties, magmatic pressure, and tectonic stress in saucer‐shaped sill growth. J Geophy Res 124: e2019JB019041

    Google Scholar 

  • Glazner A (1991) Plutonism, oblique subduction and continental growth: an example from the Mesozoic of California. Geology 19:784–786

    Google Scholar 

  • Glazner AF, Bartley JM, Coleman D, Gray W, Taylor RZ (2004) Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14. https://doi.org/10.1130/1052-5173

  • Gottsmann J, Lavallee Y, Martì J, Aguirre-Diaz G (2009) Magma–tectonic interaction and the eruption of silicic batholiths. Earth Planet Sci Lett 284:426–434

    Google Scholar 

  • Gregg PM, de Silva SL, Grosfils EB (2013) Thermomechanics of shallow magma chamber pressurization: Implications for the assessment of ground deformation data at active volcanoes. Earth Planet Sci Lett 384:100–108

    Google Scholar 

  • Grossman-Ponemon BE, Eimisson ER, Lew AJ, Segall P (2020) Logarithmic growth of dikes from a depressurizing magma chamber. Geophysical Research Letters 47:e2019GL086230

    Google Scholar 

  • Gudmundsson A (1990) Emplacement of dikes, sills and crustal magma chambers at divergent plate boundaries. Tectonophysics 176:257–275

    Google Scholar 

  • Gudmundsson A (2006) How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes. Earth Sci Rev 79:1–31

    Google Scholar 

  • Gudmundsson A (2012) Magma chambers: Formation, local stresses, excess pressures, and compartments. J Volcanol Geoth Res 237–238:19–41

    Google Scholar 

  • Gudmundsson O, Bransdottir B, Menke W, Sigvaldson GE (1994) The crustal magma chamber of the Katla volcano in South Iceland revealed by 2-D seismic undershooting. Geophys J Int 110:277–296

    Google Scholar 

  • Haug OT, Galland O, Souloumiac P, Souche A, Guldstrand F, Schmiedel T (2017) Inelastic damage as a mechanical precursor for the emplacement of saucer-shaped intrusions. Geology 45:1–4

    Google Scholar 

  • Henry CD, Kunk MJ, Muehlberger WR, McIntosh WC (1997) Igneous evolution of a complex laccolith-caldera, the Solitario, Trans-Pecos, Texas: Implications for calderas and subjacent plutons. Geol Soc Am Bull 109:1036–1054

    Google Scholar 

  • Holness MB, Humphreys MCS (2003) The Traigh Bhan na Sgurra Sill, Isle of Mull: Flow Localization in a Major Magma Conduit. J Petrol 44:1961–1976

    Google Scholar 

  • Hooper A (2012) A volcano’s sharp intake of breath. Nat Geosci 5:686–687

    Google Scholar 

  • Huber C, Townsend M, Degruyter W, Bachmann O (2019) Optimal depth of subvolcanic magma chamber growth controlled by volatiles and crust rheology. Nat Geosci 12:762–768

    Google Scholar 

  • Hutton DHW (1988) Igneous emplacement in a shear zone termination: the biotite granite at Strontian, Scotland. Geol Soc Am Bull 100:1392–1399

    Google Scholar 

  • Hutton DHW, Dempster TJ, Brown PE, Becker SD (1990) A new mechanism of granite emplacement: intrusion in active extensional shear zones. Nature 343:452–455

    Google Scholar 

  • Hutton DHW (1992) Granite sheeted complexes: evidence for the dyking ascent mechanism. Trans Royal Soc Edinburgh Earth Sci 83:377–382

    Google Scholar 

  • Jaeger JC (1964) Thermal effects of intrusions. Rev Geophys 2:443–466

    Google Scholar 

  • Jellinek AM, DePaolo DJ (2003) A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull Volcanol 65:363–381

    Google Scholar 

  • Jiang C, Schmandt B, Farrell J, Lin F-C, Ward KM (2018) Seismically anisotropic magma reservoirs underlying silicic calderas. Geology 46:727–730

    Google Scholar 

  • John BE, Blundy JD (1993) Emplacement-related deformation of granitoid magmas, southern Adamello Massif, Italy. Geol Soc Am Bull 105:1517–1541

    Google Scholar 

  • Johnson AM, Pollard DD (1973) Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah, I. Field observations, Gilbert’s model, physical properties and flow of the magma. Tectonophysics 18:261–309

    Google Scholar 

  • Johnson SE, Albertz M, Paterson SR (2001) Growth rates of dike-fed plutons: Are they compatible with observations in the middle and upper crust? Geology 29:727–730

    Google Scholar 

  • Jonsson S, Zebker H, Amelung F (2005) On trapdoor faulting at Sierra Negra volcano, Galapagos. J Volcanol Geoth Res 144:59–71

    Google Scholar 

  • Kalakay TJ, John BE, Lageson DR (2001) Fault-controllled pluton emplacement in the Sevier fold and thrust belt of southwest Montana, USA. J Struct Geol 23:1151–1168

    Google Scholar 

  • Karlstrom L, Dufek J, Manga M (2009) Organization of volcanic plumbing through magmatic lensing by magma chambers and volcanic loads. J Geophys Res 114:B10204. https://doi.org/10.1029/2009JB006339

    Article  Google Scholar 

  • Karlstrom L, Dufek J, Manga M (2010) Magma chamber stability in arc and continental crust. J Volcanol Geoth Res 190:249–270

    Google Scholar 

  • Kavanagh JL, Menand T, Sparks RSJ (2006) An experimental investigation of sill formation and propagation in layered elastic media. Earth Planet Sci Lett 245:799–813

    Google Scholar 

  • Kavanagh JL, Boutelier D, Cruden AR (2015) The mechanics of sill inception, propagation and growth: experimental evidence for rapid reduction in magmatic overpressure. Earth Planet Sci Lett 421:117–128

    Google Scholar 

  • Kennedy BM, Holohan EP, Stix J, Gravley DM, Davidson JRJ, Cole JW (2018) Magma plumbing beneath collapse caldera volcanic systems. Earth Sci Rev 177:404–424

    Google Scholar 

  • Kilburn CRJ, De Natale G, Carlino S (2017) Progressive approach to eruption at Campi Flegrei caldera in southern Italy. Nature Communications 8:15312. https://doi.org/10.1038/ncomms15312

    Article  Google Scholar 

  • Koulakov I, Gordeev EI, Dobretsov NL, Vernikovsky VA, Senyukov S, Jakovlev A (2011) Feeding volcanoes of the Kluchevskoy group from the results of local earthquake tomography. Geophys Res Lett 38:L09305. https://doi.org/10.1029/2011GL046957

    Article  Google Scholar 

  • Lees JM (2007) Seismic tomography of magmatic systems. J Volcanol Geoth Res 167:37–56

    Google Scholar 

  • Leuthold J, Muntener O, Baumgartner L, Putlitz B, Ovtcharova M, Schaltegger U (2012) Time resolved construction of a bimodal laccolith (Torres del Paine, Patagonia). Earth Planet Sci Lett 325:85–92

    Google Scholar 

  • Lipman PW (2007) Incremental assembly and prolonged consolidation of Cordilleran magma chambers: Evidence from the Southern Rocky Mountain volcanic field. Geosphere 3:42–70

    Google Scholar 

  • Lipman PW, Bachmann O (2015) Ignimbrites to batholiths: Integrating perspectives from geological, geophysical, and geochronological data. Geosphere 11:1–39

    Google Scholar 

  • Liu H, Martelet G, Wang B, Erdmann S, Chen Y, Faure M et al (2018) Incremental emplacement of the Late Jurassic midcrustal, lopolith-like Qitianling pluton, South China, revealed by AMS and Bouguer gravity data. J Geophys Res 123:9249–9268

    Google Scholar 

  • Lu Z, Dzurisin D (2014) InSAR Imaging of Aleutian volcanoes. Springer, Monitoring a volcanic arc from Space, p 390

    Google Scholar 

  • Lundgren P, Lu Z (2006) Inflation model of Uzon caldera, Kamchatka, constrained by satellite radar interferometry observations. Geophys Res Lett 33:L06301. https://doi.org/10.1029/2005GL02

    Article  Google Scholar 

  • Macedonio G, Giudicepietro F, D’Auria L, Martini M (2014) Sill intrusion as a source mechanism of unrest at volcanic calderas. J Geophys Res 119:3986–4000

    Google Scholar 

  • Magee C, Stewart EH, Jackson CAL (2013) Volcano growth mechanisms and the role of sub-volcanic intrusions: Insights from 2D seismic reflection data. Earth Planet Sci Lett 373:41–53

    Google Scholar 

  • Mahan KH, Bartley JM, Coleman DS, Glazner AF, Carl BS (2003) Sheeted intrusion of the synkinematic McDoogle pluton, Sierra Nevada, California. Geol Soc Am Bull 115:1570–1582

    Google Scholar 

  • Matthews NE, Huber C, Pyle DM, Smith VC (2012) Timescales of Magma Recharge and Reactivation of Large Silicic Systems from Ti Diffusion in Quartz. J Petrol 53:1385–1416

    Google Scholar 

  • Mattsson T, Burchardt S, Ronchin ABSG, E, (2018) Syn-Emplacement Fracturing in the Sandfell Laccolith, Eastern Iceland—Implications for Rhyolite Intrusion Growth and Volcanic Hazards. Front Earth Sci 6:5. https://doi.org/10.3389/feart.2018.00005

    Article  Google Scholar 

  • Matzel JEP, Bowring SA, Miller RB (2006) Time scales of pluton construction at differing crustal levels: Examples from the Mount Stuart and Tenpeak intrusions, North Cascades, Washington. Geol Soc Am Bull 118:1412–1430

    Google Scholar 

  • McCaffrey KJW, Petford N (1997) Are granitic intrusions scale invariant? J Geol Soc London 154:1–4

    Google Scholar 

  • McLeod P, Tait S (1999) The growth of dykes from magma chambers. J Volcanol Geoth Res 92:231–245

    Google Scholar 

  • McNulty B, Tobisch OT, Cruden AR, Gilder S (2000) Multistage emplacement of the Mount Givens pluton, central Sierra Nevada batholith, California. Geol Soc Am Bull 112:119–135

    Google Scholar 

  • McVey BG, Hooft EEE, Heath BA, Toomey DR, Paulatto M, Morgan JV et al (2019) Magma accumulation beneath Santorini volcano, Greece, from P-wave tomography. Geology 48:231–235

    Google Scholar 

  • Menand T (2008) The mechanics and dynamics of sills in layered elastic rocks and their implications for the growth of laccoliths and other igneous complexes. Earth Planet Sci Lett 267:93–99

    Google Scholar 

  • Menand T, Daniels KA, Benghiat P (2010) Dyke propagation and sill formation in a compressive tectonic environment. J Geophys Res 115:B08201. https://doi.org/10.1029/2009JB006791

    Article  Google Scholar 

  • Menand T (2011) Physical controls and depth of emplacement of igneous bodies: A review. Tectonophysics 500:11–19

    Google Scholar 

  • Menand T, Annen C, de Saint Blanquat M (2015) Rates of magma transfer in the crust: Insights into magma reservoir recharge and pluton growth. Geology 43:199–202

    Google Scholar 

  • Michel J, Baumgartner L, Putlitz B, Schaltegger U, Ovtcharova M (2008) Incremental growth of the Patagonian Torres del Paine laccolith over 90 k.y. Geology 36:459–462

    Google Scholar 

  • Miller JS (2008) Assembling a pluton…one increment at a time. Geology 36:511–512

    Google Scholar 

  • Mitchell MA, White RS, Roecker S, Greenfield T (2013) Tomographic image of melt storage beneath Askja Volcano, Iceland using local microseismicity. Geophys Res Lett 40:5040–5046

    Google Scholar 

  • Morgan SS, Law RD, Byman MW (1998) Laccolith-like emplacement model for the Papoose Flat pluton based on porphyroblast-matrix analysis. Geol Soc Am Bull 110:96–110

    Google Scholar 

  • Morgan S (2018) Pascal’s principle, a simple model to explain the emplacement of laccoliths and some mid-crustal plutons. In: Burchardt S (ed) Volcanic and igneous plumbing systems; Understanding Magma Transport, Storage, and Evolution in the Earth’s Crust. Elsevier, pp 139–162

    Google Scholar 

  • Morley CK (2018) 3-D seismic imaging of the plumbing system of the Kora Volcano, Taranaki Basin, New Zealand: The influence of syn-rift structure on shallow igneous intrusion architecture. Geosphere 14:2533–2584

    Google Scholar 

  • Musumeci G, Mazzarini F, Corti G, Barsella M, Montanari D (2005) Magma emplacement in a thrust ramp anticline: The Gavorrano Granite (northern Apennines, Italy). Tectonics 24:TC6009. https://doi.org/10.1029/2005TC001801

  • O’Driscoll B, Troll V, Reavy RJ, Turner P (2006) The Great Eucrite intrusion of Ardnamurchan, Scotland: Reevaluating the ring-dike concept. Geology 34:189–192

    Google Scholar 

  • Pagli C, Sigmundsson F, Arnadottir T, Einarsson P, Sturkell E (2006) Deflation of the Askja volcanic system: constraints on the deformation source from combined inversion of satellite radar interferograms and GPS measurements. J Volcanol Geoth Res 152:97–108

    Google Scholar 

  • Pagli C, Wright TJ, Ebinger CJ, Yun SH, Cann JR, Barnie T et al (2012) Shallow axial magma chamber at the slow spreading Erta Ale Ridge. Nat Geosci. https://doi.org/10.1038/NGEO1414

    Article  Google Scholar 

  • Pansino S, Taisne B (2019) How magmatic storage regions attract and repel propagating dikes. J Geophys Res 124:274–290

    Google Scholar 

  • Pasquarè F, Tibaldi A (2007) Structure of a sheet-laccolith system revealing the interplay between tectonic and magma stresses at Stardalur Volcano, Iceland. J Volcanol Geoth Res 161:131–150

    Google Scholar 

  • Paterson SR, Fowler TK (1993) Extensional pluton-emplacement models: Do they work for large plutonic complexes? Geology 21:781–784

    Google Scholar 

  • Paterson SR, Miller RB (1998) Magma emplacement during arc-perpendicular shortening: an example from the Cascades crystalline core, Washington. Tectonics 17:571–586

    Google Scholar 

  • Paterson SR, Memett V, Mundil R, Zak J (2016) Repeated, multiscale, magmatic erosion and recycling in an upper-crustal pluton: Implications for magma chamber dynamics and magma volume estimates. Am Miner 101:2176–2198

    Google Scholar 

  • Paulatto M, Annen C, Henstock TJ, Kiddle E, Minshull TA, Sparks RSJ et al (2012) Magma chamber properties from integrated seismic tomography and thermal modeling at Montserrat. Geochem Geophys Geosyst 13:Q01014. https://doi.org/10.1029/2011GC003892

    Article  Google Scholar 

  • Petford N, Cruden AR, McCaffrey KJW, Vigneresse JL (2000) Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408:669–673

    Google Scholar 

  • Pinel V, Jaupart C (2003) Magma chamber behavior beneath a volcanic Edifice. J Geophys Res 108:2072. https://doi.org/10.1029/2002JB001751

    Article  Google Scholar 

  • Pollard DD (1973) Derivation and evaluation of a mechanical model for sheet intrusions. Tectonophysics 19:233–269

    Google Scholar 

  • Pollard DD, Johnson AM (1973) Mechanics of growth of some laccolith intrusions in the Henry Mountains, Utah, II; bending and failure of overburden layers and sill formation. Tectonophysics 18:311–354

    Google Scholar 

  • Polteau S, Ferré EC, Planke S, Neumann E-R, Chevallier L (2008) How are saucer-shaped sills emplaced? Constraints from the Golden Valley Sill, South Africa. J Geophys Res 113:B12104. https://doi.org/10.1029/2008JB005620

    Article  Google Scholar 

  • Purdy GM, Kong LSL, Christenson GL, Solomon SC (1991) Relationship between spreading rate and the seismic structure of mid-ocean ridges. Nature 355:815–817

    Google Scholar 

  • Reid MR (2008) How Long Does It Take to Supersize an Eruption? Elements 4:23–28

    Google Scholar 

  • Richards SW, Collins WJ (2004) Growth of wedge-shaped plutons at the base of active half-grabens. Trans Royal Soc Edinburgh Earth Sci 95:309–317

    Google Scholar 

  • Rivalta E, Corbi F, Passarelli L, Acocella V, Davis T, Di Vito MA et al (2019) Stress inversions to forecast magma pathways and eruptive vent location. Science Advances 5:eaau9784

    Google Scholar 

  • Roberts PM, Aki K, Fehler MC (1991) A low velocity zone in the basement beneath the Valles caldera, New Mexico. J Geophys Res 96:21583–21596

    Google Scholar 

  • Rocchi S, Westerman DS, Dini A, Innocenti F, Tonarini S (2002) Two-stage growth of laccoliths at Elba Island, Italy. Geology 30:983–986

    Google Scholar 

  • Roman Berdiel T, Gapais D, Brun JP (1995) Analogue models of laccolith formation. J Struct Geol 17:1337–1346

    Google Scholar 

  • Rosenberg CL, Berger A, Schmid SM (1995) Observations from the floor of a granitoid pluton: Inferences on the driving force of final emplacement. Geology 23:443–446

    Google Scholar 

  • Rubin AM (1993) On the thermal viability of dikes leaving magma chambers. Geophys Res Lett 20:257–260

    Google Scholar 

  • Schofield N, Stevenson C, Reston T (2010) Magma fingers and host rock fluidization in the emplacement of sills. Geology 38:63–66

    Google Scholar 

  • Scheibert J, Galland O, Hafver A (2017) Inelastic deformation during sill and laccolith emplacement: insights from an analytic elasto-plastic model. J Geophys Res 122:923–945

    Google Scholar 

  • Schopa A, Annen C (2013) The effects of magma flux variations on the formation and lifetime of large silicic magma chambers. J Geophys Res 118:926–942

    Google Scholar 

  • Seccia D, Chiarabba C, De Gori P, Bianchi I, Hill DP (2011) Evidence for the contemporary magmatic system beneath Long Valley Caldera from local earthquake tomography and receiver function analysis. J Geophys Res 116:B12314. https://doi.org/10.1029/2011JB008471

    Article  Google Scholar 

  • Shaw HR (1985) Links between magma-tectonic rate balances, plutonism, and volcanism. J Geophys Res 90:11275–11288

    Google Scholar 

  • Shea EK, Miller JS, Miller RB, Bowring SA, Sullivan KM (2016) Growth and maturation of a mid- to shallow-crustal intrusive complex, North Cascades, Washington. Geosphere 12:1489–1516

    Google Scholar 

  • Sigmundsson F, Hreinsdottir S, Hooper A, Arnadottir T, Pedersen R, Roberts MJ et al (2010) Intrusion triggering of the 2010 Eyjafjallajokull explosive eruption. Nature 468:426–430

    Google Scholar 

  • Sili G, Urbani S, Acocella V (2019) What controls sill formation: An overview from analogue models. J Geophys Res 124. https://doi.org/10.1029/2018JB017005

  • Sliwinski J, Farsky D, Lipman PW, Guillong M, Bachmann O (2019) Rapid Magma Generation or Shared Magmatic Reservoir? Petrology and Geochronology of the Rat Creek and Nelson Mountain Tuffs, CO, USA. Front Earth Sci 7:271. https://doi.org/10.3389/feart.2019.00271

    Article  Google Scholar 

  • Singer BS, Costa F, Herrin JS, Hildreth W, Fierstein J (2016) The timing of compositionally zoned magma reservoirs and mafic ‘priming’ weeks before the 1912 Novarupta-Katmai rhyolite eruption. Earth Planet Sci Lett 451:125–137

    Google Scholar 

  • Singer BS, Le Melvel H, Licciardi JM, Cordova L, Tikoff B, Garibaldi N et al (2018) Geomorphic expression of rapid Holocene silicic magma reservoir growth beneath Laguna del Maule, Chile. Sci Adv 4:eaat1513

    Google Scholar 

  • Siregar E, Omosanya KO, Magee C, Johansen SE (2019) Impacts of fault-sill interactions on sill emplacement in the Vøring Basin, Norwegian North Sea. J Struct Geol 126:156–174

    Google Scholar 

  • Sparks RSJ, Cashman KV (2017) Dynamic magma systems: implications for forecasting volcanic activity. Elements 13:35–40

    Google Scholar 

  • Sparks RSJ, Annen CJ, Blundy J, Cashman K, Rust A, Jackson MD (2019) Formation and dynamics of magma reservoirs. Philosophical Trans Royal Soc Math Phys Eng Sci 377:20190019

    Google Scholar 

  • Thomson K (2007) Determining magma flow in sills, dykes and laccoliths and their implications for sill emplacement mechanisms. Bull Volcanol 70:183–201

    Google Scholar 

  • Tikoff B, Teyssier C (1992) Crustal-scale, en echelon “P shear” tensional bridges: a possible solution to the batholithic room problem. Geology 20:927–930

    Google Scholar 

  • Tikoff B, de Saint Blanquat M (1997) Transpressional shearing and strike-slip partitioning in the Late Cretaceous Sierra Nevada magmatic arc, California. Tectonics 16:442–459

    Google Scholar 

  • Tikoff B, de Saint Blanquat M, Teyssier C (1999) Translation and the resolution of the pluton space problem. J Struct Geol 21:1109–1117

    Google Scholar 

  • Tobisch O, Cruden AR (1995) Fracture controlled magma conduits in an obliquely convergent continental magmatic arc. Geology 23:941–944

    Google Scholar 

  • Townsend M, Huber G (2020) A critical magma chamber size for volcanic eruptions. Geology 48:431–435

    Google Scholar 

  • Turcotte DL, Schubert G (2002) Geodynamics: application of continuum physics to geological problems. John Wiley NY pp 450

    Google Scholar 

  • Urbani S, Acocella V, Rivalta E (2018) What drives the lateral versus vertical propagation of dikes? Insights from analogue models. J Geophys Res 123. https://doi.org/10.1029/2017JB015376

  • Vigneresse JL (1995) Crustal regime of deformation and ascent of granitic magma. Tectonophysics 249:187–202

    Google Scholar 

  • Vigneresse JL, Tikoff B, Améglio L (1999) Modification of the regional stress field by magma intrusion and formation of tabular granitic plutons. Tectonophysics 302:203–224

    Google Scholar 

  • Waite GP, Moran SC (2009) VP Structure of Mount St. Helens, Washington, USA, imaged with local earthquake tomography. J Volcanol Geoth Res 182:113–122

    Google Scholar 

  • Walker JD, Fletcher JM, Fillmore RP, Martin MW, Taylor WJ, Glazner AF et al (1995) Connection between igneous activity and extension in the central Mojave metamorphic core complex, California. J Geophys Res 100:10477–10494

    Google Scholar 

  • West M, Menke W, Tolstoy M, Sebb S, Sohn R (2001) Magma storage beneath Axial volcano on the Juan de Fuca mid-ocean ridge. Nature 413:833–836

    Google Scholar 

  • White SM, Crisp JA, Spera FJ (2006) Long-term volumetric eruption rates and magma budgets. Geochem Geophys Geosyst 7. https://doi.org/10.1029/2005GC001002

  • Wilson CJN, Charlier BLA (2016) The Life and Times of Silicic Volcanic Systems. Elements 12:103–108

    Google Scholar 

  • Wotzlaw J-F, Bindeman IN, Watts KE, Schmitt AK, Caricchi L, Schaltegger U (2014) Linking rapid magma reservoir assembly and eruption trigger mechanisms at evolved Yellowstone-type supervolcanoes. Geology 42:807–810

    Google Scholar 

  • Wotzlaw J-F, Bindeman IN, Stern RA, D’Abzac F-X, Schaltegger U (2015) Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions. Scientific Reports 5:14026. https://doi.org/10.1038/srep14026

    Article  Google Scholar 

  • Wrona T, Magee C, Fossen H, Gawthorpe RL, Jackson CAL, Faleide JI (2019) 3-D seismic images of an extensive igneous sill in the lower crust. Geology 47:729–733

    Google Scholar 

  • Zandomeneghi D, Barclay A, Almendros J, Godoy JMI, Wilcock WSD, Ben-Zvi T (2009) Crustal structure of Deception Island volcano from P wave seismic tomography: Tectonic and volcanic implications. J Geophys Res 114:B06310. https://doi.org/10.1029/2008JB006119

    Article  Google Scholar 

  • Zollo A, Maercklin N, Vassallo M, Dello Iacono D, Virieux J, Gasparini P (2008) Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys Res Lett 35:L12306. https://doi.org/10.1029/2008GL034242

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Acocella, V. (2021). Magma Emplacement and Accumulation: From Sills to Magma Chambers. In: Volcano-Tectonic Processes. Advances in Volcanology. Springer, Cham. https://doi.org/10.1007/978-3-030-65968-4_4

Download citation

Publish with us

Policies and ethics