Skip to main content

Volcanoes and Plate Tectonics

  • Chapter
  • First Online:
Volcano-Tectonic Processes

Part of the book series: Advances in Volcanology ((VOLCAN))

Abstract

This chapter introduces the third part of the book, presenting the regional tectonic frame of volcanoes. In this third part the previously described volcano-tectonic processes are considered at a wider scale, highlighting the interaction of the volcanoes with the regional tectonic context. The focus here is on how the tectonic setting may affect the location, distribution, style, type and frequency of volcanic activity, on both the longer-term (i.e., thousands to millions of years) and, as suggested by recent studies, the shorter-term (i.e., years or less, as in the co- and post-seismic cycles of regional earthquakes). The change in scale in this part of the book permits to appreciate first-order magmatic processes related to plate-tectonics mechanisms, in an exciting journey around key regions of our planet. This journey allows explaining the major differences among the volcanic provinces, as well as showing how magma plays a leading role not only in promoting intra-plate processes but, quite unexpectedly, also in shaping plate boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acocella V (2014) Structural control on magmatism along divergent and convergent plate boundaries: overview, model, problems. Earth-Sci Rev 136:226–288

    Google Scholar 

  • Acocella V, Funiciello F (2010) Kinematic setting and structural control of arc volcanism. Earth Planet Sci Lett 289:43–53

    Google Scholar 

  • Acocella V, Trippanera D (2016) How diking affects the tectono-magmatic evolution of slow spreading plate boundaries: overview and model. Geosphere 12:1–17

    Google Scholar 

  • Acocella V, Yoshida T, Yamada R, Funiciello F (2008) Structural control on Late Miocene to quaternary volcanism in the NE Honshu arc, Japan. Tectonics 27:TC5008. https://doi.org/10.1029/2008TC002296

  • Acocella V, Bellier O, Sandri L, Sébrier M, Pramumijoyo S (2018) Tectono-magmatic relationships along an obliquely convergent plate boundary: Sumatra, Indonesia. Front Ear Sci 6:3. https://doi.org/10.3389/feart.2018.00003

    Article  Google Scholar 

  • Allan ASR, Wilson CJN, Millet MA, Wysoczansk RJ (2012) The invisible hand: tectonic triggering and modulation of a rhyolitic supereruption. Geology 40:563–566

    Google Scholar 

  • Beck SL, Zandt G (2002) The nature of orogenic crust in the central Andes. J Geophys Res 107:2230. https://doi.org/10.1029/2000JB000124

    Article  Google Scholar 

  • Bercovici D, Mahoney J (1994) Double flood basalts and plume head separation at the 660-kilometer discontinuity. Science 266:1367–1369

    Google Scholar 

  • Bianco TA, Ito G, Beker JM, Garcia MO (2005) Secondary Hawaiian volcanism formed by flexural arch decompression. Geochem Geophys Geosyst 6:Q08009. https://doi.org/10.1029/2005GC000945

    Article  Google Scholar 

  • Biggs J, Anthony EY, Ebinger CJ (2009) Multiple inflation and deflation events at Kenyan volcanoes, East African Rift. Geology 37:979–982

    Google Scholar 

  • Bott MHP (1995) Mechanisms of rifting: geodynamic modelling of continental rift systems. In: Olsen KH (ed) Continental rifts: evolution, structure, tectonics. developments in geotectonics, vol 25, pp 27–43

    Google Scholar 

  • Brune S, Williams SE, Dietmar Mulle R (2018) Oblique rifting: the rule, not the exception. Solid Earth 9:1187–1206

    Google Scholar 

  • Bryan SE, Peate IU, Peate DW, Self S, Jerram DA, Mawby MR et al (2010) The largest volcanic eruptions on Earth. Earth Sci Rev 102:207–229

    Google Scholar 

  • Buck RW, Einarsson P, Brandsdottir B (2006) Tectonic stress and magma chamber size as controls on dike propagation: constraints from the 1975–1984 Krafla rifting episode. J Geophys Res 111:B12404. https://doi.org/10.1029/2005JB003879

    Article  Google Scholar 

  • Cagnioncle AM, Parmentier EM, Elkins-Tanton LT (2007) Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries. J Geophys Res 112:9402. https://doi.org/10.1029/2007JB004934

    Article  Google Scholar 

  • Calais E, d’Oreye N, Albaric J, Deschamps A, Delvaux D, Deverchere J (2008) Strain accommodation by dyking in a youthful continental rift, East Africa. Nature 456:783–787

    Google Scholar 

  • Campbell IH (2005) Large igneous provinces and the mantle plume hypothesis. Elements 1:265–268

    Google Scholar 

  • Cassidy J, Locke CA (2010) The Auckland volcanic field, New Zealand: geophysical evidence for structural and spatio-temporal relationships. J Volcanol Geoth Res 195:127–137

    Google Scholar 

  • Chaussard E, Amelung F (2012) Precursory inflation of shallow magma reservoirs at west Sunda volcanoes detected by InSAR. Geophys Res Lett 39:L21311. https://doi.org/10.1029/2012GL053817

    Article  Google Scholar 

  • Coffin MF, Eldholm O (1994) Large igneous provinces: crustal structure, dimensions, and external consequences. Rev Geophys 32:1–36

    Google Scholar 

  • Corti G, Bonini M, Conticelli S, Innocenti F, Manetti P, Sokoutis D (2003) Analogue modelling of continental extension: a review focused on the relations between the patterns of deformation and the presence of magma. Earth-Sci Rev 63:169–247

    Google Scholar 

  • Courtillot V, Davaille A, Besse J, Stock J (2003) Three distinct types of hotspots in the Earth’s mantle. Earth Planet Sci Lett 205:295–308

    Google Scholar 

  • Davies GF (1999) Dynamic earth plates, plumes and mantle convection. Cambridge University Press, 470 pp

    Google Scholar 

  • Davies JH, von Blanckenburg F (1995) Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett 129:85–102

    Google Scholar 

  • De Bremond d’Ars, J, Jaupart C, Sparks RSJ (1995) Distribution of volcanoes in active margins. J Geophys Res 100:20421–20432

    Google Scholar 

  • DeMets C (1992) Oblique convergence and deformation along the Kuril and Japanese trenches. J Geophys Res 97:17615–17625

    Google Scholar 

  • de Silva S, Lindsay JM (2015) Primary volcanic landforms In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) The encyclopedia of volcanoes, 2nd edn. Elsevier Academic Press, pp 273–297

    Google Scholar 

  • Ebinger CJ, Casey M (2001) Continental breakup in magmatic provinces: an Ethiopian example. Geology 29:527–530

    Google Scholar 

  • Ebinger CJ, Hayward NJ (1996) Soft plates and hot spots: views from Afar. J Geophys Res 101:21859–21876

    Google Scholar 

  • Ebinger CJ, Sleep NH (1998) Cenozoic magmatism throughout east Africa resulting from impact of a single plume. Nature 395:788–791

    Google Scholar 

  • Ebinger CJ, Ayele A, Keir D, Rowland J, Yirgu G, Wright T et al (2010) Length and timescales of rift faulting and magma intrusion: the Afar rifting cycle from 2005 to present. Ann Rev Earth Planet Sci 38:439–466

    Google Scholar 

  • Faccenna C, Molin P, Orecchio B, Olivetti V, Bellier O, Funiciello F et al (2011) Topography of the Calabria subduction zone (southern Italy): clues for the origin of Mt. Etna. Tectonics 30:TC1003. https://doi.org/10.1029/2010TC002694

  • Farnetani CG, Hofmann AW (2011) Mantle plumes. In: Encyclopedia of solid earth geophysics. Springer. https://doi.org/10.1007/978-90-481-8702-7

  • Farnetani CG, Richards MA (1994) Numerical investigation of the mantle plume initiation model for flood basalt events. J Geophys Res 99:13813–13883

    Google Scholar 

  • Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer, Berlin, p 472

    Google Scholar 

  • Forsyth D, Uyeda S (1975) On the relative importance of the driving forces of plate motion. Geophys J Int 43:163–200

    Google Scholar 

  • Fossen H (2010) Structural geology. Cambridge University Press, 481 pp

    Google Scholar 

  • Fournier M, Petit C (2007) Oblique rifting at oceanic ridges: relationship between spreading and stretching directions from earthquake focal mechanisms. J Struct Geol 29:201–208

    Google Scholar 

  • French SW, Romanowicz B (2015) Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525:95–99

    Google Scholar 

  • Galland O, Cobbold PR, de Bremond DJ, Hallot E (2007) Rise and emplacement of magma during horizontal shortening of the brittle crust: insights from experimental modelling. J Geophys Res 112:B06402. https://doi.org/10.1029/2006JB004604

    Article  Google Scholar 

  • Gordon RG, Jurdy DM (1986) Cenozoic global plate motions. J Geophys Res 91:12389–12406

    Google Scholar 

  • Gripp AE, Gordon RG (2002) Young tracks of hot spot and current plate velocities. Geophys J Int 150:321–361

    Google Scholar 

  • Gudmundsson A (1995) Infrastructure and mechanics of volcanic systems in Iceland. J Volcanol Geoth Res 64:1–22

    Google Scholar 

  • Gvirtzman Z, Nur A (1999) The formation of Mount Etna as the consequence of slab rollback. Nature 401:782–785

    Google Scholar 

  • Hall R, Spakman W (2015) Mantle structure and tectonic history of SE Asia. Tectonophysics 658:14–45

    Google Scholar 

  • Hand E (2015) Mantle plumes seen rising from Earth’s core. Science 349:1032–1033

    Google Scholar 

  • Heuret A, Funiciello F, Faccenna C, Lallemand S (2007) Plate kinematics, slab shape and back-arc stress: a comparison between laboratory models and current subduction zones. Ear Planet Sci Lett 256:473–483

    Google Scholar 

  • Hieronymus CF, Bercovici D (2001) A theoretical model of hotspot volcanism: control on volcanic spacing and patterns via magma dynamics and lithospheric stresses. J Geophys Res 106:683–702

    Google Scholar 

  • Isacks B, Oliver J, Sykes LR (1968) Seismology and the new global tectonics. J Geophys Res 73:5855–5899

    Google Scholar 

  • Ito G, Lin J, Graham D (2003) Observational and theoretical studies of the dynamics of mantle plume-Mid-Ocean Ridge interaction. Rev Geophys 41:1017. https://doi.org/10.1029/2002RG000117

    Article  Google Scholar 

  • Jacques E, King GCP, Tapponnier P, Ruegg JC, Manighetti I (1996) Seismic activity triggered by stress changes after the 1978 events in the Asal Rift, Djibouti. Geophys Res Lett 23:2481–2484

    Google Scholar 

  • Jaffe RL, Taylor W (2018) The physics of energy. Cambridge University Press, 874 pp

    Google Scholar 

  • Jellinek MA, Manga M (2004) Links between long-lived hot spots, mantle plumes, “D”, and plate tectonics. Rev Geophys 42:RG3002. https://doi.org/10.1029/2003RG000144

  • Kay RW, Kay SM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189

    Google Scholar 

  • Kerr RC, Meriaux C (2004) Structure and dynamics of sheared mantle plumes. Geochem Geophys Geosyst 5:Q12009. https://doi.org/10.1029/2004GC000749

    Article  Google Scholar 

  • Keskin M (2003) Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: an alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophys Res Lett 30:8046. https://doi.org/10.1029/2003GL018019

    Article  Google Scholar 

  • King SD, Adam C (2014) Hotspot swells revisited. Phys Earth Planet Inter 235:66–83

    Google Scholar 

  • Koulakov I, Kasatkina E, Shapiro NM, Jaupart C, Vasilevsky A, El Khrepy S et al (2016) The feeder system of the Toba supervolcano from the slab to the shallow reservoir. Nat Commun 7:12228. https://doi.org/10.1038/ncomms12228

    Article  Google Scholar 

  • Kreemer C, Blewitt G, Klein EC (2014) A geodetic plate motion and global strain rate model. Geochem Geophys Geosyst 15:3849–3889

    Google Scholar 

  • LaFemina PC (2015) Plate tectonics and volcanism. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) The encyclopedia of volcanoes, 2nd edn. Elsevier Academic Press, pp 65–91

    Google Scholar 

  • Latin D, White N (1990) Generating melt during lithospheric extension: pure shear vs. simple shear. Geology 18:327–331

    Google Scholar 

  • Le Corvec N, Menand T, Lindsay J (2013) Interaction of ascending magma with pre-existing crustal fractures in monogenetic basaltic volcanism: an experimental approach. J Geophys Res 118:968–984

    Google Scholar 

  • Le Pichon X (1968) Sea-floor spreading and continental drift. J Geophys Res 73:3661–3697

    Google Scholar 

  • Liotard JM, Dautria JM, Bosch D, Condomines M, Mehdizadeh M, Ritz J-F (2008) Origin of the absarokite–banakite association of the Damavand volcano (Iran): trace elements and Sr, Nd, Pb isotope constraints. Int J Ear Sci 97:89–102

    Google Scholar 

  • Maccaferri F, Rivalta E, Keir D, Acocella A (2014) Off-rift volcanism in rift zones determined by crustal unloading. Nat Geosci 7:297–300

    Google Scholar 

  • Maccaferri F, Acocella V, Rivalta E (2015) How the differential load induced by normal fault scarps controls the distribution of monogenic volcanism. Geophys Res Lett 42. https://doi.org/10.1002/2015GL065638

  • Mazzarini F (2007) Vent distribution and crustal thickness in stretched continental crust: the case of the Afar Depression (Ethiopia). Geosphere 3:152–162

    Google Scholar 

  • Mazzarini F, Ferrari L, Isola I (2010) Self-similar clustering of cinder cones and crust thickness in the Michoacan-Guanajuato and Sierra de Chichinautzin volcanic fields, Trans-Mexican Volcanic Belt. Tectonophysics 486:55–64

    Google Scholar 

  • McCaffrey R (1992) Oblique plate convergence, slip vectors and forearc deformation. J Geophys Res 97:8905–8915

    Google Scholar 

  • McCaffrey R (1996) Estimates of modern arc-parallel strain rates in fore arcs. Geology 24:27–30

    Google Scholar 

  • McKenzie DP (1977) The initiation of trenches: a finite amplitude instability. In: Talwani M, Pitman WC (eds) Island arcs deep sea trenches and back-arc basins, vol 1. Maurice Ewing Ser AGU, Washington, pp 57–61

    Google Scholar 

  • McKenzie D (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40:25–32

    Google Scholar 

  • McKenzie DP, Parker RL (1967) The North Pacific: an example of tectonics on a sphere. Nature 216:1276–1280

    Google Scholar 

  • McNutt MK, Judge AV (1990) The superswell and mantle dynamics beneath the South Pacific. Science 248:969–975

    Google Scholar 

  • Mohr PA, Wood CA (1976) Volcano spacing and lithospheric attenuation in the Eastern Rift of Africa. Earth Planet Sci Lett 33:126–144

    Google Scholar 

  • Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung SH (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303:338–343

    Google Scholar 

  • Morgan WJ (1968) Rises, trenches, great faults and crustal blocks. J Geophys Res 73:1959–1982

    Google Scholar 

  • Muirhead J, Van Eaton AR, Re G, White JDL, Ort MH (2016) Monogenetic volcanoes fed by interconnected dikes and sills in the Hopi Buttes volcanic field, Navajo Nation, USA. Bull Volcanol 78:11. https://doi.org/10.1007/s00445-016-1005-8

    Article  Google Scholar 

  • Muller JR, Ito G, Martel SJ (2001) Effects of volcano loading on dike propagation in an elastic half-space. J Geophys Res 106:11101–11113

    Google Scholar 

  • Nakamura K (1977) Volcanoes as possible indicators of tectonic stress orientation: principle and proposal. J Volcanol Geoth Res 2:1–16

    Google Scholar 

  • Nakamura K, Jacob KH, Davies JN (1977) Volcanoes as possible indicators of tectonic stress orientation: aleutians and Alaska. In: Pageoph, vol 115. Birkhauser Verlag, Basel, pp 87–112

    Google Scholar 

  • Nobile A, Pagli C, Keir D, Wright TJ, Ayele A, Ruch J et al (2012) Dyke-fault interaction during the 2004 Dallol intrusion at the northern edge of the Erta Ale Ridge (Afar, Ethiopia). Geophys Res Lett 39:L19305. https://doi.org/10.1029/2012GL053152

    Article  Google Scholar 

  • O’Connor JM, Jokat W, Regelous M, Kuiper KF, Miggins DP, Koppers AAP (2019) Superplume mantle tracked isotopically the length of Africa from the Indian ocean to the Red Sea. Nat Commun 10:5493. https://doi.org/10.1038/s41467-019-13181-7

    Article  Google Scholar 

  • Orellana-Rovirosa F, Richards M (2017) Rough versus smooth topography along oceanic hotspot tracks: observations and scaling analysis. Geophys Res Lett 44:4074–4081

    Google Scholar 

  • Pallister JS, McCausland WA, Jonsson S, Lu Z, Zahran HM, El Hadidy S et al (2010) Broad accommodation of rift-related extension recorder by dyke intrusion in Saudi Arabia. Nat Geosci 3:708–712

    Google Scholar 

  • Parsons B, McKenzie D (1979) Mantle convection and the thermal structure of the plates. J Geophys Res 83:4485–4496

    Google Scholar 

  • Peyton V, Levin V, Park J, Brandon M, Lees J, Gordeev E et al (2001) Mantle flow at a slab edge: seismic anisotropy in the Kamchatka region. Geophys Res Lett 28:379–382

    Google Scholar 

  • Pritchard ME, Jay JA, Aron F, Henderson ST, Lara LE (2013) Subsidence at southern Andes volcanoes induced by the 2010 Maule, Chile earthquake. Nat Geosci 6:632–636

    Google Scholar 

  • Ramberg H (1981) Gravity, deformation and the Earth’s crust in theory, experiments and geological applications. Academic Press, London, 452 pp

    Google Scholar 

  • Romanowicz B, Gung Y (2002) Superplumes from the core-mantle boundary to the lithosphere: implications for heat flux. Science 296:513–516

    Google Scholar 

  • Rooney TO (2020a) The cenozoic magmatism of East-Africa: part i—flood basalts and pulsed magmatism. Lithos 286–287:264–301

    Google Scholar 

  • Rooney TO (2020b) The Cenozoic magmatism of East Africa: part ii—rifting of the mobile belt. Lithos 360–361:105291

    Google Scholar 

  • Rosenbaum G, Gasparon M, Lucente FP, Peccerillo A, Miller MS (2008) Kinematics of slab tear faults during subduction segmentation and implications for Italian magmatism. Tectonics 27:TC2008. https://doi.org/10.1029/2007TC002143

  • Rowland JV, Baker E, Ebinger CJ, Keir D, Kidane T, Biggs J et al (2007) Fault growth at a nascent slow-spreading ridge: the 2005 Dabbahu rifting episode, Afar. Geophys J Int 171:1226–1246

    Google Scholar 

  • Rowland JV, Wilson CJN, Gravley DM (2010) Spatial and temporal variations in magma-assisted rifting, Taupo Volcanic Zone, New Zealand. J Volcanol Geoth Res 190:89–108

    Google Scholar 

  • Rubin AM (1995) Propagation of magma-filled cracks. Annu Rev Earth Planet Sci 23:287–336

    Google Scholar 

  • Ruegg JC, Kasser M, Lépine JC, Tarantola A (1979) Geodetic measurements of rifting associated with a seismo–volcanic crisis in Afar. Geophys Res Lett 6:817–820

    Google Scholar 

  • Ruppel C (1995) Extensional processes in continental lithosphere. J Geophys Res 100:24187–24215

    Google Scholar 

  • Sani F, Bonini M, Corti G, Moratti G (2019) Extension direction re-orientation in the oceanic rift of Iceland, and comparison with continental rifts. Tectonophysics 756:25–42

    Google Scholar 

  • Schmincke H-U (2004) Volcanism. Springer, Berlin, p 290

    Google Scholar 

  • Schurr B, Rietbrock A, Asch G, Kind R, Oncken O (2006) Evidence for lithospheric detachment in the central Andes from local earthquake tomography. Tectonophysics 415:203–223

    Google Scholar 

  • Sdrolias M, Muller RD (2006) Controls on back-arc basin formation. Geochem Geophys Geosyst 7:Q04016. https://doi.org/10.1029/2005GC001090

    Article  Google Scholar 

  • Self S, Coffin MF, Rampino MR, Wolff JA (2015) Large Igneous Provinces and Flood Basalt Volcanism In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) The encyclopedia of volcanoes, 2nd edn. Elsevier Academic Press, pp 441–458

    Google Scholar 

  • Shabanian E, Acocella V, Gioncada A, Ghasemi H, Bellier O (2012) Structural control on magmatism in intraplate collisional settings: extinct example from NE Iran and current analogues. Tectonics 31:TC3013. https://doi.org/10.1029/2011TC003042

  • Sigmundsson F (2006) Magma does the splits. Nature 442:251–252

    Google Scholar 

  • Sigmundsson F, Hooper A, Hreinsdottir S, Vogfjord KS, Ofeigsson DG, Heimisson et al (2015) Segmented lateral dyke growth in a rifting event at Barðarbunga volcanic system, Iceland. Nature 517:191–195

    Google Scholar 

  • Sleep NH (1990) Hotspots and mantle plumes some phenomenology. J Geophys Res 95:6715–6736

    Google Scholar 

  • Steinberger B, Sutherland R, O’Connell RJ (2004) Prediction of Hawaiian-Emperor seamount locations from a revised model of global plate motion and mantle flow. Nature 430:167–173

    Google Scholar 

  • Stuwe K (2007) Geodynamics of the lithosphere. Springer, 493 pp.

    Google Scholar 

  • Takada A (1994) The influence of regional stress and magmatic input on styles of monogenetic and polygenetic volcanism. J Geophys Res 99:13563–13573

    Google Scholar 

  • Takada Y, Fukushima Y (2013) Volcanic subsidence triggered by the 2011 Tohoku earthquake in Japan. Nat Geosci 6:637–641

    Google Scholar 

  • Tarantola A, Ruegg JC, Lepine JC (1979) Geodetic evidence for rifting in Afar. A brittle-elastic model of the behavior of the lithosphere. Earth Planet Sci Lett 45:435–444

    Google Scholar 

  • Tenbrink UT (1991) Volcano spacing and plate rigidity. Geology 19:397–400

    Google Scholar 

  • Tibaldi A (2005) Volcanism in compressional tectonic settings. Is it possible? Geophys Res Lett 32. https://doi.org/10.1029/2004GL021798

  • Tikoff B, Teyssier C (1994) Strain modeling of displacement-field partitioning in transpression orogens. J Struct Geol 16:1575–1588

    Google Scholar 

  • Tolstoy M, Cowen JP, Baker ET, Fornari DJ, Rubin KH, Shank TM et al (2006) A sea-floor spreading event captured by seismometers. Science 314:1920–1922

    Google Scholar 

  • Tron V, Brun JP (1991) Experiments on oblique rifting in brittle–ductile systems. Tectonophysics 188:71–84

    Google Scholar 

  • Turcotte DL, Schubert G (1982) Geodynamics: application of continuum physics to geological problems. Wiley, NY, 450 pp

    Google Scholar 

  • Turner SP, George RM, Evans PJ, Hawkesworthy CJ, Zellmer GF (2000) Time-scales of magma formation, ascent and storage beneath subduction-zone volcanoes. Philos Trans R Soc Lond A 358:1443–1464

    Google Scholar 

  • Uyeda S, Kanamori H (1979) Back-arc opening and the mode of subduction. J Geophys Res 84:1049–1061

    Google Scholar 

  • Valentine GA, Connor CB (2015) Basaltic volcanic fields In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) The encyclopedia of volcanoes, 2nd edn. Elsevier Academic Press, pp 423–440

    Google Scholar 

  • van der Pluijm BA, Marshak S (2004) Earth structure: an introduction to structural geology and tectonics. WW Norton & Company, 673 pp

    Google Scholar 

  • Vidal V, Bonneville A (2004) Variations of the Hawaiian hot spot activity revealed by variations in the magma production rate. J Geophys Res 109:B03104. https://doi.org/10.1029/2003JB002559

    Article  Google Scholar 

  • Vine FJ (1966) Spreading of the ocean floor: new evidence. Science 154:1405–1415

    Google Scholar 

  • Vine FJ, Matthews DH (1963) Magnetic anomalies over oceanic ridges. Nature 199:947–949

    Google Scholar 

  • Walter TR, Amelung F (2007) Volcanic eruptions following M ≥ 9 megathrust earthquakes: implications for the Sumatra-Andaman volcanoes. Geology 35:539–542

    Google Scholar 

  • Wegener A (1912) Die Entstehung der Kontinente. Geol Rundsch 3:276–292

    Google Scholar 

  • Wendt JI, Regelous M, Collerson KD, Ewart A (1997) Evidence for a contribution from two mantle plumes to island-arc lavas from northern Tonga. Geology 25:611–614

    Google Scholar 

  • Wernicke B (1985) Uniform-sense normal simple shear of the continental lithosphere. Can J Earth Sci 22:108–125

    Google Scholar 

  • White R, McKenzie D (1989) Magmatism at rift zones. The generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7729

    Google Scholar 

  • Whittaker JM, Afonso JC, Masterton S, Müller RD, Wessel P, Williams SE et al (2015) Long-term interaction between mid-ocean ridges and mantle plumes. Nat Geosci 8:479–483

    Google Scholar 

  • Wilson JT (1968) Static or mobile Earth: the current scientific revolution. Proc Am Philos Soc 112:309–320

    Google Scholar 

  • Wilson JT (1972) Continents adrift. Readings from Scientific American Freeman WH and Company San Francisco, 172 pp.

    Google Scholar 

  • Withjack MO, Jamison WR (1986) Deformation produced by oblique rifting. Tectonophysics 126:99–124

    Google Scholar 

  • Wright TJ, Ebinger C, Biggs J, Ayele A, Yirgu G, Keir D et al (2006) Magma maintained rift segmentation at continental rupture in the 2005 Afar dyking episode. Nature 442:291–294

    Google Scholar 

  • Zhao D (2004) Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics. Phys Earth Planet Inter 146:3–34

    Google Scholar 

  • Ziegler P, Cloetingh S (2004) Dynamic processes controlling evolution of rifted basins. Earth-Sci Rev 64:1–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Acocella, V. (2021). Volcanoes and Plate Tectonics. In: Volcano-Tectonic Processes. Advances in Volcanology. Springer, Cham. https://doi.org/10.1007/978-3-030-65968-4_10

Download citation

Publish with us

Policies and ethics