Skip to main content

Insights into the Molecular Basis of Genome Stability and Pristine Proteostasis in Naked Mole-Rats

  • Chapter
  • First Online:
The Extraordinary Biology of the Naked Mole-Rat

Abstract

The naked mole-rat (Heterocephalus glaber) is the longest-lived rodent, with a maximal reported lifespan of 37 years. In addition to its long lifespan – which is much greater than predicted based on its small body size (longevity quotient of ~4.2) – naked mole-rats are also remarkably healthy well into old age. This is reflected in a striking resistance to tumorigenesis and minimal declines in cardiovascular, neurological and reproductive function in older animals. Over the past two decades, researchers have been investigating the molecular mechanisms regulating the extended life- and health- span of this animal, and since the sequencing and assembly of the naked mole-rat genome in 2011, progress has been rapid. Here, we summarize findings from published studies exploring the unique molecular biology of the naked mole-rat, with a focus on mechanisms and pathways contributing to genome stability and maintenance of proteostasis during aging. We also present new data from our laboratory relevant to the topic and discuss our findings in the context of the published literature.

figure a

Photo Credit: Ben Passarelli

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Predicted maximal longevity in years was based on the allometric equation of de Magalhaes et al. (2007): tmax = 4.88 M0.153 where M is the mass in grams.

References

  • Abdelmohsen K, Kuwano Y, Kim HH, Gorospe M (2008) Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence. Biol Chem 389(3):243–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andziak B, Buffenstein R (2006) Disparate patterns of age-related changes in lipid peroxidation in long-lived naked mole-rats and shorter-lived mice. Aging Cell 5(6):525–532

    Article  CAS  PubMed  Google Scholar 

  • Andziak B, O’Connor TP, Qi W, DeWaal EM, Pierce A, Chaudhuri AR, Van Remmen H, Buffenstein R (2006) High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell 5(6):463–471

    Article  CAS  PubMed  Google Scholar 

  • Arrigo AP, Virot S, Chaufour S, Firdaus W, Kretz-Remy C, Diaz-Latoud C (2005) Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxid Redox Signal 7:414–422

    Google Scholar 

  • Asthana A, Bollapalli M, Tangirala R, Bakthisaran R, Mohan Rao C (2014) Hsp27 suppresses the Cu(2+)-induced amyloidogenicity, redox activity, and cytotoxicity of alpha-synuclein by metal ion stripping. Free Radic Biol Med 72:176–190

    Article  CAS  PubMed  Google Scholar 

  • Azpurua J, Ke Z, Chen IX, Zhang Q, Ermolenko DN, Zhang ZD, Gorbunova V, Seluanov A (2013) Naked mole-rat has increased translational fidelity compared with the mouse, as well as a unique 28S ribosomal RNA cleavage. Proc Natl Acad Sci U S A 110(43):17350–17355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakthisaran R, Tangirala R, Rao Ch M (2015) Small heat shock proteins: role in cellular functions and pathology. Biochim Biophys Acta 1854(4):291–319

    Article  CAS  PubMed  Google Scholar 

  • Barends TR, Werbeck ND, Reinstein J (2010) Disaggregases in 4 dimensions. Curr Opin Struct Biol 20(1):46–53

    Article  CAS  PubMed  Google Scholar 

  • Benayoun BA, Pollina EA, Brunet A (2015) Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16(10):593–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackburn EH, Epel ES, Lin J (2015) Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350(6265):1193–1198

    Article  CAS  PubMed  Google Scholar 

  • Book AJ, Yang P, Scalf M, Smith LM, Vierstra RD (2005) Tripeptidyl peptidase II. An oligomeric protease complex from Arabidopsis. Plant Physiol 138(2):1046–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borbolis F, Syntichaki P (2015) Cytoplasmic mRNA turnover and ageing. Mech Ageing Dev 152:32–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandman O, Hegde RS (2016) Ribosome-associated protein quality control. Nat Struct Mol Biol 23(1):7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buffenstein R (2005) The naked mole-rat: a new long-living model for human aging research. J Gerontol A Biol Sci Med Sci 60(11):1369–1377

    Article  PubMed  Google Scholar 

  • Buffenstein R (2008) Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species. J Comp Physiol B 178(4):439–445

    Article  PubMed  Google Scholar 

  • Buffenstein R, Craft W (2021) The idiosyncratic physiological traits of the naked mole-rat; a resilient animal model of aging, longevity, and healthspan. In: Buffenstein R, Park TJ, Holmes MM (eds) The Extraordinary Biology of the Naked Mole-Rat. Springer, New York, pp 221–254

    Google Scholar 

  • Buffenstein R, Yahav S (1991) Is the naked mole-rat Heterocephalus glaber an endothermic yet poikilothermic mammal? J Therm Biol 16(4):227–232

    Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92(3):351–366

    Article  CAS  PubMed  Google Scholar 

  • Chandu D, Kumar A, Nandi D (2003) PepN, the major Suc-LLVY-AMC-hydrolyzing enzyme in Escherichia coli, displays functional similarity with downstream processing enzymes in Archaea and eukarya. Implications in cytosolic protein degradation. J Biol Chem 278(8):5548–5556

    Google Scholar 

  • Chen HJ, Mitchell JC, Novoselov S, Miller J, Nishimura AL, Scotter EL, Vance CA, Cheetham ME, Shaw CE (2016) The heat shock response plays an important role in TDP-43 clearance: evidence for dysfunction in amyotrophic lateral sclerosis. Brain 139(Pt 5):1417–1432

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins GA, Goldberg AL (2017) The logic of the 26S proteasome. Cell 169(5):792–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dabin J, Fortuny A, Polo SE (2016) Epigenome maintenance in response to DNA damage. Mol Cell 62(5):712–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta S, Castro LM, Dulman R, Yang C, Schmidt M, Ferro ES, Fricker LD (2014) Proteasome inhibitors alter levels of intracellular peptides in HEK293T and SH-SY5Y cells. PLoS One 9(7):e103604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19(18):2100–2110

    Article  PubMed  CAS  Google Scholar 

  • de Magalhaes JP, Costa J, Church GM (2007) An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J Gerontol A Biol Sci Med Sci 62(2):149–160

    Article  PubMed  Google Scholar 

  • De AK, Kodys KM, Yeh BS, Miller-Graziano C (2000) Exaggerated human monocyte IL-10 concomitant to minimal TNF-alpha induction by heat-shock protein 27 (Hsp27) suggests Hsp27 is primarily an antiinflammatory stimulus. J Immunol 165(7):3951–3958

    Article  CAS  PubMed  Google Scholar 

  • Delaney MA, Ward JM, Walsh TF, Chinnadurai SK, Kerns K, Kinsel MJ, Treuting PM (2016) Initial case reports of cancer in naked mole-rats (Heterocephalus glaber). Vet Pathol 53(3):691–696

    Google Scholar 

  • Delaney M, Imai D, Buffenstein R (2021) Spontaneous disease and pathology of naked mole-rats. In: Buffenstein R, Park TJ, Holmes MM (eds) The Extraordinary Biology of the Naked mole-Rat. Springer, New York, pp 353–380

    Google Scholar 

  • Denzel MS, Lapierre LR, Mack HID (2019) Emerging topics in C. elegans aging research: transcriptional regulation, stress response and epigenetics. Mech Ageing Dev 177:4–21

    Google Scholar 

  • Deuker MM, Lewis KN, Ingaramo M, Kimmel J, Buffenstein R, Settleman J (2020) Unprovoked stabilization and nuclear accumulation of the naked mole-rat p53 protein. Sci Rep 10(1):6966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doudna JA, Rath VL (2002) Structure and function of the eukaryotic ribosome: the next frontier. Cell 109(2):153–156

    Article  CAS  PubMed  Google Scholar 

  • Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874

    Article  CAS  PubMed  Google Scholar 

  • Evdokimov A, Kutuzov M, Petruseva I, Lukjanchikova N, Kashina E, Kolova E, Zemerova T, Romanenko S, Perelman P, Prokopov D, Seluanov A, Gorbunova V, Graphodatsky A, Trifonov V, Khodyreva S, Lavrik O (2018) Naked mole rat cells display more efficient excision repair than mouse cells. Aging 10(6):1454–1473

    Google Scholar 

  • Evfratov SA, Smekalova EM, Golovin AV, Logvina NA, Zvereva MI, Dontsova OA (2014) Structural features of the telomerase RNA gene in the naked mole rat Heterocephalus glaber. Acta Nat 6(2):41–47

    Google Scholar 

  • Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292(5515):288–290

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Seim I, Huang Z, Gerashchenko MV, Xiong Z, Turanov AA, Zhu Y, Lobanov AV, Fan D, Yim SH, Yao X, Ma S, Yang L, Lee SG, Kim EB, Bronson RT, Sumbera R, Buffenstein R, Zhou X, Krogh A, Park TJ, Zhang G, Wang J, Gladyshev VN (2014) Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes. Cell Rep 8(5):1354–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frye M, Harada BT, Behm M, He C (2018) RNA modifications modulate gene expression during development. Science 361(6409):1346–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda Y, Beck F, Plitzko JM, Baumeister W (2017) In situ structural studies of tripeptidyl peptidase II (TPPII) reveal spatial association with proteasomes. Proc Natl Acad Sci U S A 114(17):4412–4417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geier E, Pfeifer G, Wilm M, Lucchiari-Hartz M, Baumeister W, Eichmann K, Niedermann G (1999) A giant protease with potential to substitute for some functions of the proteasome. Science 283(5404):978–981

    Article  CAS  PubMed  Google Scholar 

  • George W (1979) Conservatism in the karyotypes of two African mole-rats (Rodentia, Bathyergidae). Zeitschrift für Säugetierkunde 44:278–285

    Google Scholar 

  • Giguere CJ, Schnellmann RG (2008) Limitations of SLLVY-AMC in calpain and proteasome measurements. Biochem Biophys Res Commun 371(3):578–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glas R, Bogyo M, McMaster JS, Gaczynska M, Ploegh HL (1998) A proteolytic system that compensates for loss of proteasome function. Nature 392(6676):618–622

    Article  CAS  PubMed  Google Scholar 

  • Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221(1):3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greer EL, Brunet A (2005) FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24(50):7410–7425

    Article  CAS  PubMed  Google Scholar 

  • Grimes KM, Reddy AK, Lindsey ML, Buffenstein R (2014) And the beat goes on: maintained cardiovascular function during aging in the longest-lived rodent, the naked mole-rat. Am J Physiol Heart Circ Physiol 307(3):H284–H291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Vargas C (2020) Single-Particle Cryo-Electron Microscopy Studies of Ribosomes with Fragmented 28S rRNA. Ph.D. Thesis, Columbia University, New York, New York

    Google Scholar 

  • Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49(2):359–367

    Article  CAS  PubMed  Google Scholar 

  • Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6(1):95–110

    Google Scholar 

  • Hansen M, Rubinsztein DC, Walker DW (2018) Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol 19(9):579–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinze I, Bens M, Calzia E, Holtze S, Dakhovnik O, Sahm A, Kirkpatrick JM, Szafranski K, Romanov N, Sama SN, Holzer K, Singer S, Ermolaeva M, Platzer M, Hildebrandt T, Ori A (2018) Species comparison of liver proteomes reveals links to naked mole-rat longevity and human aging. BMC Biol 16(1):82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115

    Article  PubMed  PubMed Central  Google Scholar 

  • Hulbert AJ, Faulks SC, Buffenstein R (2006) Oxidation-resistant membrane phospholipids can explain longevity differences among the longest-living rodents and similarly-sized mice. J Gerontol A Biol Sci Med Sci 61(10):1009–1018

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13(1):76–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal AK (2000) Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic Biol Med 29(3–4):254–262

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal H, Conz C, Otto H, Wolfle T, Fitzke E, Mayer MP, Rospert S (2011) The chaperone network connected to human ribosome-associated complex. Mol Cell Biol 31(6):1160–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis JUM (1981) Eusociality in a mammal: cooperative breeding in naked mole-rat colonies. Science 212(4494):571–573

    Google Scholar 

  • Jarvis JUM, O'Riain MJ, McDaid E (1991) Growth and factors affecting body size in naked mole-rats. In: Sherman PW, Jarvbis JUM, Alexander RD (eds) The Biology of the Naked Mole-Rat. Princeton University Press, Princeton, pp 358–383

    Google Scholar 

  • Jayaraj GG, Hipp MS, Hartl FU (2020) Functional modules of the proteostasis network. Cold Spring Harb Perspect Biol 12(1):a033951

    Google Scholar 

  • Jiang JJ, Cheng LH, Wu H, He YH, Kong QP (2016) Insights into long noncoding RNAs of naked mole-rat (Heterocephalus glaber) and their potential association with cancer resistance. Epigenetics Chromatin 9:51

    Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14(1):105–111

    Article  CAS  PubMed  Google Scholar 

  • Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14(10):885–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke Z, Mallik P, Johnson AB, Luna F, Nevo E, Zhang ZD, Gladyshev VN, Seluanov A, Gorbunova V (2017) Translation fidelity coevolves with longevity. Aging Cell 16(5):988–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keane M, Craig T, Alfoldi J, Berlin AM, Johnson J, Seluanov A, Gorbunova V, Di Palma F, Lindblad-Toh K, Church GM, de Magalhaes JP (2014) The naked mole-rat genome resource: facilitating analyses of cancer and longevity-related adaptations. Bioinformatics 30(24):3558–3560

    Google Scholar 

  • Kenyon CJ (2010) The genetics of ageing. Nature 464(7288):504–512

    Article  CAS  PubMed  Google Scholar 

  • Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV, Han L, Marino SM, Sun X, Turanov AA, Yang P, Yim SH, Zhao X, Kasaikina MV, Stoletzki N, Peng C, Polak P, Xiong Z, Kiezun A, Zhu Y, Chen Y, Kryukov GV, Zhang Q, Peshkin L, Yang L, Bronson RT, Buffenstein R, Wang B, Han C, Li Q, Chen L, Zhao W, Sunyaev SR, Park TJ, Zhang G, Wang J, Gladyshev VN (2011) Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 479(7372):223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kisselev AF, Akopian TN, Woo KM, Goldberg AL (1999) The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J Biol Chem 274(6):3363–3371

    Article  CAS  PubMed  Google Scholar 

  • Klaips CL, Jayaraj GG, Hartl FU (2018) Pathways of cellular proteostasis in aging and disease. J Cell Biol 217(1):51–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komoda T, Sato NS, Phelps SS, Namba N, Joseph S, Suzuki T (2006) The A-site finger in 23 S rRNA acts as a functional attenuator for translocation. J Biol Chem 281(43):32303–32309

    Article  CAS  PubMed  Google Scholar 

  • Kruegel U, Robison B, Dange T, Kahlert G, Delaney JR, Kotireddy S, Tsuchiya M, Tsuchiyama S, Murakami CJ, Schleit J, Sutphin G, Carr D, Tar K, Dittmar G, Kaeberlein M, Kennedy BK, Schmidt M (2011) Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet 7(9):e1002253

    Google Scholar 

  • Labbadia J, Morimoto RI (2015) The biology of proteostasis in aging and disease. Annu Rev Biochem 84:435–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BP, Smith M, Buffenstein R, Harries LW (2020) Negligible senescence in naked mole rats may be a consequence of well-maintained splicing regulation. Geroscience 42(2):633–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leiser SF, Kaeberlein M (2010) The hypoxia-inducible factor HIF-1 functions as both a positive and negative modulator of aging. Biol Chem 391(10):1131–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis KN, Mele J, Hornsby PJ, Buffenstein R (2012) Stress resistance in the naked mole-rat: the bare essentials – a mini-review. Gerontology 58(5):453–462

    Google Scholar 

  • Lewis KN, Wason E, Edrey YH, Kristan DM, Nevo E, Buffenstein R (2015) Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc Natl Acad Sci U S A 112(12):3722–3727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhang Y, Li C, Xie J, Liu Y, Zhu W, Zhang X, Jiang S, Liu L, Ding Z (2013) HSPA12B attenuates cardiac dysfunction and remodelling after myocardial infarction through an eNOS-dependent mechanism. Cardiovasc Res 99(4):674–684

    Article  CAS  PubMed  Google Scholar 

  • Li J, Labbadia J, Morimoto RI (2017) Rethinking HSF1 in stress, development, and organismal health. Trends Cell Biol 27(12):895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang S, Mele J, Wu Y, Buffenstein R, Hornsby PJ (2010) Resistance to experimental tumorigenesis in cells of a long-lived mammal, the naked mole-rat (Heterocephalus glaber). Aging Cell 9(4):626–635

    Google Scholar 

  • Liggett A, Crawford LJ, Walker B, Morris TC, Irvine AE (2010) Methods for measuring proteasome activity: current limitations and future developments. Leuk Res 34(11):1403–1409

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe R, Barton C, Jenkins CA, Ernst C, Forman O, Fernandez-Twinn DS, Bock C, Rossiter SJ, Faulkes CG, Ozanne SE, Walter L, Odom DT, Mellersh C, Rakyan VK (2018) Ageing-associated DNA methylation dynamics are a molecular readout of lifespan variation among mammalian species. Genome Biol 19(1):22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lowe R, Danson AF, Rakyan VK, Yildizoglu S, Saldmann F, Viltard M, Friedlander G, Faulkes CG (2020) DNA methylation clocks as a predictor for ageing and age estimation in naked mole-rats, Heterocephalus glaber. Aging 12(5):4394–4406

    Google Scholar 

  • Ma Y, Lu C, Li C, Li R, Zhang Y, Ma H, Zhang X, Ding Z, Liu L (2013) Overexpression of HSPA12B protects against cerebral ischemia/reperfusion injury via a PI3K/Akt-dependent mechanism. Biochim Biophys Acta 1832(1):57–66

    Article  CAS  PubMed  Google Scholar 

  • MacRae SL, Croken MM, Calder RB, Aliper A, Milholland B, White RR, Zhavoronkov A, Gladyshev VN, Seluanov A, Gorbunova V, Zhang ZD, Vijg J (2015a) DNA repair in species with extreme lifespan differences. Aging 7(12):1171–1184

    Google Scholar 

  • MacRae SL, Zhang Q, Lemetre C, Seim I, Calder RB, Hoeijmakers J, Suh Y, Gladyshev VN, Seluanov A, Gorbunova V, Vijg J, Zhang ZD (2015b) Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human. Aging Cell 14(2):288–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madeo F, Zimmermann A, Maiuri MC, Kroemer G (2015) Essential role for autophagy in life span extension. J Clin Invest 125(1):85–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Masuda K, Marasa B, Martindale JL, Halushka MK, Gorospe M (2009) Tissue- and age-dependent expression of RNA-binding proteins that influence mRNA turnover and translation. Aging 1(8):681–698

    Google Scholar 

  • Mata J, Marguerat S, Bahler J (2005) Post-transcriptional control of gene expression: a genome-wide perspective. Trends Biochem Sci 30(9):506–514

    Article  CAS  PubMed  Google Scholar 

  • McDonough H, Patterson C (2003) CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8(4):303–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melen GJ, Pesce CG, Rossi MS, Kornblihtt AR (1999) Novel processing in a mammalian nuclear 28S pre-rRNA: tissue-specific elimination of an ‘intron’ bearing a hidden break site. EMBO J 18(11):3107–3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell TW, Buffenstein R, Hulbert AJ (2007) Membrane phospholipid composition may contribute to exceptional longevity of the naked mole-rat (Heterocephalus glaber): a comparative study using shotgun lipidomics. Exp Gerontol 42(11):1053–1062

    Google Scholar 

  • Miura K, Oiwa Y, Kawamura Y (2021) Induced pluripotent stem cells from cancer-resistant naked mole-rats. In: Buffenstein R, Park TJ, Holmes MM (eds) The Extraordinary Biology of the Naked Mole-Rat. Springer, New York, pp 329–339

    Google Scholar 

  • Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, Koya I, Okada Y, Kimura T, Tsuchiya Y, Suzuki S, Onishi N, Kuzumaki N, Matsuzaki Y, Narita M, Ikeda E, Okanoya K, Seino K, Saya H, Okano H, Miura K (2016) Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun 7:11471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mordret E, Dahan O, Asraf O, Rak R, Yehonadav A, Barnabas GD, Cox J, Geiger T, Lindner AB, Pilpel Y (2019) Systematic detection of amino acid substitutions in proteomes reveals mechanistic basis of ribosome errors and selection for translation fidelity. Mol Cell 75(3):427–441

    Google Scholar 

  • Natsidis P, Schiffer PH, Salvador-Martinez I, Telford MJ (2019) Computational discovery of hidden breaks in 28S ribosomal RNAs across eukaryotes and consequences for RNA Integrity Numbers. Sci Rep 9(1):19477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18(1):64–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen NN, Rana A, Goldman C, Moore R, Tai J, Hong Y, Shen J, Walker DW, Hur JH (2019) Proteasome beta5 subunit overexpression improves proteostasis during aging and extends lifespan in Drosophila melanogaster. Sci Rep 9(1):3170

    Google Scholar 

  • Novoselov SS, Mustill WJ, Gray AL, Dick JR, Kanuga N, Kalmar B, Greensmith L, Cheetham ME (2013) Molecular chaperone mediated late-stage neuroprotection in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. PLoS One 8(8):e73944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Riain MJ, Jarvis JUM (1998) The dynamics of growth in naked mole-rats: the effects of litter order and changes in social structure. J Zool 246(1):49–60

    Article  Google Scholar 

  • Olzmann JA, Chin LS (2008) Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway. Autophagy 4(1):85–87

    Article  CAS  PubMed  Google Scholar 

  • Orr ME, Garbarino VR, Salinas A, Buffenstein R (2016) Extended postnatal brain development in the longest-lived rodent: prolonged maintenance of neotenous traits in the naked mole-rat brain. Front Neurosci 10:504

    Article  PubMed  PubMed Central  Google Scholar 

  • Ott C, Konig J, Hohn A, Jung T, Grune T (2016) Macroautophagy is impaired in old murine brain tissue as well as in senescent human fibroblasts. Redox Biol 10:266–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pappireddi N, Martin L, Wuhr M (2019) A review on quantitative multiplexed proteomics. Chembiochem 20(10):1210–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park TJ, Reznick J, Peterson BL, Blass G, Omerbasic D, Bennett NC, Kuich P, Zasada C, Browe BM, Hamann W, Applegate DT, Radke MH, Kosten T, Lutermann H, Gavaghan V, Eigenbrod O, Begay V, Amoroso VG, Govind V, Minshall RD, Smith ESJ, Larson J, Gotthardt M, Kempa S, Lewin GR (2017) Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science 356(6335):307–311

    Article  CAS  PubMed  Google Scholar 

  • Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271–294

    Article  CAS  PubMed  Google Scholar 

  • Perez VI, Buffenstein R, Masamsetti V, Leonard S, Salmon AB, Mele J, Andziak B, Yang T, Edrey Y, Friguet B, Ward W, Richardson A, Chaudhuri A (2009) Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc Natl Acad Sci 106(9):3059–3064

    Google Scholar 

  • Perez FP, Moinuddin SS, ul ain Shamim Q, Joseph DJ, Morisaki J, Zhou X (2012) Longevity pathways: HSF1 and FoxO pathways, a new therapeutic target to prevent age-related diseases. Curr Aging Sci 5(2):87–95

    Article  CAS  PubMed  Google Scholar 

  • Polanowski AM, Robbins J, Chandler D, Jarman SN (2014) Epigenetic estimation of age in humpback whales. Mol Ecol Resour 14(5):976–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powers RW 3rd, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20(2):174–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pride H, Yu Z, Sunchu B, Mochnick J, Coles A, Zhang Y, Buffenstein R, Hornsby PJ, Austad SN, Perez VI (2015) Long-lived species have improved proteostasis compared to phylogenetically-related shorter-lived species. Biochem Biophys Res Commun 457(4):669–675

    Article  CAS  PubMed  Google Scholar 

  • Pyo JO, Yoo SM, Ahn HH, Nah J, Hong SH, Kam TI, Jung S, Jung YK (2013) Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun 4:2300

    Article  PubMed  CAS  Google Scholar 

  • Rangaraju S, Solis GM, Thompson RC, Gomez-Amaro RL, Kurian L, Encalada SE, Niculescu AB 3rd, Salomon DR, Petrascheck M (2015) Suppression of transcriptional drift extends C. elegans lifespan by postponing the onset of mortality. elife 4:e08833

    Google Scholar 

  • Reddy NM, Kleeberger SR, Yamamoto M, Kensler TW, Scollick C, Biswal S, Reddy SP (2007) Genetic dissection of the Nrf2-dependent redox signaling-regulated transcriptional programs of cell proliferation and cytoprotection. Physiol Genomics 32(1):74–81

    Article  CAS  PubMed  Google Scholar 

  • Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40(2):253–266

    Article  CAS  PubMed  Google Scholar 

  • Ristow M, Schmeisser K (2014) Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose-response 12(2):288–341

    Google Scholar 

  • Rivett AJ, Savory PJ, Djaballah H (1994) Multicatalytic endopeptidase complex: proteasome. Methods Enzymol 244:331–350

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez KA, Wywial E, Perez VI, Lambert AJ, Edrey YH, Lewis KN, Grimes K, Lindsey ML, Brand MD, Buffenstein R (2011) Walking the oxidative stress tightrope: a perspective from the naked mole-rat, the longest-living rodent. Curr Pharm Des 17(22):2290–2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez KA, Edrey YH, Osmulski P, Gaczynska M, Buffenstein R (2012) Altered composition of liver proteasome assemblies contributes to enhanced proteasome activity in the exceptionally long-lived naked mole-rat. PLoS One 7(5):e35890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez KA, Osmulski PA, Pierce A, Weintraub ST, Gaczynska M, Buffenstein R (2014) A cytosolic protein factor from the naked mole-rat activates proteasomes of other species and protects these from inhibition. Biochim Biophys Acta 1842(11):2060–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez KA, Valentine JM, Kramer DA, Gelfond JA, Kristan DM, Nevo E, Buffenstein R (2016) Determinants of rodent longevity in the chaperone-protein degradation network. Cell Stress Chaperones 21(3):453–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose C, Vargas F, Facchinetti P, Bourgeat P, Bambal RB, Bishop PB, Chan SM, Moore AN, Ganellin CR, Schwartz JC (1996) Characterization and inhibition of a cholecystokinin-inactivating serine peptidase. Nature 380(6573):403–409

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B (2019) The Hsp70 chaperone network. Nat Rev Mol Cell Biol 20(11):665–680

    Article  CAS  PubMed  Google Scholar 

  • Rothbard JB, Kurnellas MP, Brownell S, Adams CM, Su L, Axtell RC, Chen R, Fathman CG, Robinson WH, Steinman L (2012) Therapeutic effects of systemic administration of chaperone alphaB-crystallin associated with binding proinflammatory plasma proteins. J Biol Chem 287(13):9708–9721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146(5):682–695

    Article  CAS  PubMed  Google Scholar 

  • Ruby JG, Smith M, Buffenstein R (2018) Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age. elife 7:e31157

    Google Scholar 

  • Salway KD, Gallagher EJ, Page MM, Stuart JA (2011) Higher levels of heat shock proteins in longer-lived mammals and birds. Mech Ageing Dev 132(6-7):287–297

    Article  CAS  PubMed  Google Scholar 

  • Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al-Qassab H, Carmignac D, Ramadani F, Woods A, Robinson IC, Schuster E, Batterham RL, Kozma SC, Thomas G, Carling D, Okkenhaug K, Thornton JM, Partridge L, Gems D, Withers DJ (2009) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326(5949):140–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seluanov A, Chen Z, Hine C, Sasahara TH, Ribeiro AA, Catania KC, Presgraves DC, Gorbunova V (2007) Telomerase activity coevolves with body mass not lifespan. Aging Cell 6(1):45–52

    Article  CAS  PubMed  Google Scholar 

  • Seluanov A, Hine C, Bozzella M, Hall A, Sasahara TH, Ribeiro AA, Catania KC, Presgraves DC, Gorbunova V (2008) Distinct tumor suppressor mechanisms evolve in rodent species that differ in size and lifespan. Aging Cell 7(6):813–823

    Article  CAS  PubMed  Google Scholar 

  • Seluanov A, Hine C, Azpurua J, Feigenson M, Bozzella M, Mao Z, Catania KC, Gorbunova V (2009) Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat. Proc Natl Acad Sci U S A 106(46):19352–19357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seluanov A, Gladyshev VN, Vijg J, Gorbunova V (2018) Mechanisms of cancer resistance in long-lived mammals. Nat Rev Cancer 18(7):433–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD (2008) Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 4(2):176–184

    Article  CAS  PubMed  Google Scholar 

  • Smith-Vikos T, Slack FJ (2012) MicroRNAs and their roles in aging. J Cell Sci 125(Pt 1):7–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Southworth LK, Owen AB, Kim SK (2009) Aging mice show a decreasing correlation of gene expression within genetic modules. PLoS Genet 5(12):e1000776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steffen KK, Dillin A (2016) A ribosomal perspective on proteostasis and aging. Cell Metab 23(6):1004–1012

    Article  CAS  PubMed  Google Scholar 

  • Stubbs TM, Bonder MJ, Stark AK, Krueger F, Team BIAC, von Meyenn F, Stegle O, Reik W (2017) Multi-tissue DNA methylation age predictor in mouse. Genome Biol 18(1):68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suarez-Cabrera C, de la Pena B, Gonzalez LL, Page A, Martinez-Fernandez M, Casanova ML, Paramio JM, Rojo-Sebastian A, Moreno-Bueno G, Maroto A, Ramirez A, Navarro M (2018) The Ras-related gene ERAS is involved in human and murine breast cancer. Sci Rep 8(1):13038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swovick K, Welle KA, Hryhorenko JR, Seluanov A, Gorbunova V, Ghaemmaghami S (2018) Cross-species comparison of proteome turnover kinetics. Mol Cell Proteomics 17(4):580–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tacutu R, Thornton D, Johnson E, Budovsky A, Barardo D, Craig T, Diana E, Lehmann G, Toren D, Wang J, Fraifeld VE, de Magalhaes JP (2018) Human ageing genomic resources: new and updated databases. Nucleic Acids Res 46(D1):D1083–D1090

    Google Scholar 

  • Tan L, Ke Z, Tombline G, Macoretta N, Hayes K, Tian X, Lv R, Ablaeva J, Gilbert M, Bhanu NV, Yuan ZF, Garcia BA, Shi YG, Shi Y, Seluanov A, Gorbunova V (2017) Naked mole rat cells have a stable epigenome that resists iPSC reprogramming. Stem Cell Rep 9(5):1721–1734

    Article  CAS  Google Scholar 

  • Taylor RC, Dillin A (2011) Aging as an event of proteostasis collapse. Cold Spring Harb Perspect Biol 3(5):a004440

    Google Scholar 

  • Taylor KR, Milone NA, Rodriguez CE (2017) Four cases of spontaneous neoplasia in the naked mole-rat (Heterocephalus glaber), a putative cancer-resistant species. J Gerontol A Biol Sci Med Sci 72(1):38–43

    Google Scholar 

  • Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904

    Article  CAS  PubMed  Google Scholar 

  • Thompson MJ, vonHoldt B, Horvath S, Pellegrini M (2017) An epigenetic aging clock for dogs and wolves. Aging (Albany NY) 9(3):1055–1068

    Article  CAS  Google Scholar 

  • Thomson E, Ferreira-Cerca S, Hurt E (2013) Eukaryotic ribosome biogenesis at a glance. J Cell Sci 126(21):4815–4821

    Google Scholar 

  • Tian X, Azpurua J, Hine C, Vaidya A, Myakishev-Rempel M, Ablaeva J, Mao Z, Nevo E, Gorbunova V, Seluanov A (2013) High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 499(7458):346–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian X, Azpurua J, Ke Z, Augereau A, Zhang ZD, Vijg J, Gladyshev VN, Gorbunova V, Seluanov A (2015) INK4 locus of the tumor-resistant rodent, the naked mole rat, expresses a functional p15/p16 hybrid isoform. Proc Natl Acad Sci U S A 112(4):1053–1058

    Article  CAS  PubMed  Google Scholar 

  • Tong KI, Kobayashi A, Katsuoka F, Yamamoto M (2006) Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol Chem 387(10–11):1311–1320

    CAS  PubMed  Google Scholar 

  • Triplett JC, Tramutola A, Swomley A, Kirk J, Grimes K, Lewis K, Orr M, Rodriguez K, Cai J, Klein JB, Perluigi M, Buffenstein R, Butterfield DA (2015) Age-related changes in the proteostasis network in the brain of the naked mole-rat: implications promoting healthy longevity. Biochim Biophys Acta 1852(10A):2213–2224

    Google Scholar 

  • Vilchez D, Morantte I, Liu Z, Douglas PM, Merkwirth C, Rodrigues AP, Manning G, Dillin A (2012) RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 489(7415):263–268

    Google Scholar 

  • Vilchez D, Saez I, Dillin A (2014) The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5:5659

    Article  CAS  PubMed  Google Scholar 

  • Wagner A (2005) Energy constraints on the evolution of gene expression. Mol Biol Evol 22(6):1365–1374

    Article  CAS  PubMed  Google Scholar 

  • Walerych D, Kudla G, Gutkowska M, Wawrzynow B, Muller L, King FW, Helwak A, Boros J, Zylicz A, Zylicz M (2004) Hsp90 chaperones wild-type p53 tumor suppressor protein. J Biol Chem 279(47):48836–48845

    Article  CAS  PubMed  Google Scholar 

  • Webster JM, Darling AL, Uversky VN, Blair LJ (2019) Small heat shock proteins, big impact on protein aggregation in neurodegenerative disease. Front Pharmacol 10:1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei YN, Hu HY, Xie GC, Fu N, Ning ZB, Zeng R, Khaitovich P (2015) Transcript and protein expression decoupling reveals RNA binding proteins and miRNAs as potential modulators of human aging. Genome Biol 16:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams AB, Schumacher B (2016) p53 in the DNA-damage-repair process. Cold Spring Harb Perspect Med 6(5):a026070

    Google Scholar 

  • Wilson DN, Doudna Cate JH (2012) The structure and function of the eukaryotic ribosome. Cold Spring Harb Perspect Biol 4(5):4(5):a011536

    Google Scholar 

  • Xiao B, Wang S, Yang G, Sun X, Zhao S, Lin L, Cheng J, Yang W, Cong W, Sun W, Kan G, Cui S (2017a) HIF-1alpha contributes to hypoxia adaptation of the naked mole rat. Oncotarget 8(66):109941–109951

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao B, Li L, Xu C, Zhao S, Lin L, Cheng J, Yang W, Cong W, Kan G, Cui S (2017b) Transcriptome sequencing of the naked mole rat (Heterocephalus glaber) and identification of hypoxia tolerance genes. Biol Open 6(12):1904–1912

    Google Scholar 

  • Xie J, de Souza Alves V, von der Haar T, O’Keefe L, Lenchine RV, Jensen KB, Liu R, Coldwell MJ, Wang X, Proud CG (2019) Regulation of the elongation phase of protein synthesis enhances translation accuracy and modulates lifespan. Curr Biol 29(5):737–749

    Google Scholar 

  • Yang SB, Tien AC, Boddupalli G, Xu AW, Jan YN, Jan LY (2012) Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron 75(3):425–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon MS (2017) The role of mammalian target of rapamycin (mTOR) in insulin signaling. Nutrients 9(11):1176

    Google Scholar 

  • Yuno A, Lee MJ, Lee S, Tomita Y, Rekhtman D, Moore B, Trepel JB (2018) Clinical evaluation and biomarker profiling of Hsp90 inhibitors. Methods Mol Biol 1709:423–441

    Article  CAS  PubMed  Google Scholar 

  • Yusupova G, Yusupov M (2014) High-resolution structure of the eukaryotic 80S ribosome. Annu Rev Biochem 83:467–486

    Article  CAS  PubMed  Google Scholar 

  • Zaher HS, Green R (2009) Fidelity at the molecular level: lessons from protein synthesis. Cell 136(4):746–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Bokov A, Gelfond J, Soto V, Ikeno Y, Hubbard G, Diaz V, Sloane L, Maslin K, Treaster S, Rendon S, van Remmen H, Ward W, Javors M, Richardson A, Austad SN, Fischer K (2014) Rapamycin extends life and health in C57BL/6 mice. J Gerontol A Biol Sci Med Sci 69(2):119–130

    Article  CAS  PubMed  Google Scholar 

  • Zhang MW, Zhao P, Yung WH, Sheng Y, Ke Y, Qian ZM (2018) Tissue iron is negatively correlated with TERC or TERT mRNA expression: a heterochronic parabiosis study in mice. Aging 10(12):3834–3850

    Google Scholar 

  • Zhang P, Wu W, Chen Q, Chen M (2019) Non-coding RNAs and their integrated networks. J Integr Bioinform 16(3):20190027

    Google Scholar 

  • Zhao S, Lin L, Kan G, Xu C, Tang Q, Yu C, Sun W, Cai L, Xu C, Cui S (2014) High autophagy in the naked mole rat may play a significant role in maintaining good health. Cell Physiol Biochem 33(2):321–332

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Calico Life Sciences LLC for funding this work. We also thank David Botstein, Yao Wong, Ewan St. John Smith and Thomas Park for their constructive critique of this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Narayan, V., McMahon, M., O’Brien, J.J., McAllister, F., Buffenstein, R. (2021). Insights into the Molecular Basis of Genome Stability and Pristine Proteostasis in Naked Mole-Rats. In: Buffenstein, R., Park, T.J., Holmes, M.M. (eds) The Extraordinary Biology of the Naked Mole-Rat. Advances in Experimental Medicine and Biology, vol 1319. Springer, Cham. https://doi.org/10.1007/978-3-030-65943-1_11

Download citation

Publish with us

Policies and ethics