Skip to main content

GP with Image-Related Operators for Feature Learning

  • Chapter
  • First Online:
Genetic Programming for Image Classification

Part of the book series: Adaptation, Learning, and Optimization ((ALO,volume 24))

Abstract

Many image-related operators, including image descriptors, filtering operators and pooling operators, can be employed as functions in GP to achieve effective feature learning. However, this has not been extensively investigated in GP due to the limitations of the current GP representations. This chapter proposes a new GP-based approach with a flexible program structure and a number of image-related operators for feature learning in image classification. In this new approach, a new program structure, a new function set with many image-related operators, a new terminal set are developed. The performance of the proposed approach is examined on 12 benchmark datasets, including seven datasets with a large number of instances, and compared with a large number of effective algorithms. An in-depth analysis is conducted to deeply analyse the proposed approach to understand why it can achieve good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The training and test sets can be downloaded from http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/PublicDatasets.

References

  1. Al-Sahaf H, Song A, Neshatian K, Zhang M (2012) Two-tier genetic programming: towards raw pixel-based image classification. Expert Syst with Appl 39(16):12291–12301

    Article  Google Scholar 

  2. Al-Sahaf H, Zhang M, Al-Sahaf A, Johnston M (2017) Keypoints detection and feature extraction: a dynamic genetic programming approach for evolving rotation-invariant texture image descriptors. IEEE Trans Evolu Comput 21(6):825–844

    Article  Google Scholar 

  3. Atkins D, Neshatian K, Zhang M (2011) A domain independent genetic programming approach to automatic feature extraction for image classification. In: Proceedings of IEEE congress on evolutionary computation, pp 238–245

    Google Scholar 

  4. Bi Y, Xue B, Zhang M (2018) A gaussian filter-based feature learning approach using genetic programming to image classification. In: Proceedings of Australasian joint conference on artificial intelligence. Springer, pp 251–257

    Google Scholar 

  5. Bi Y, Xue B, Zhang M (2020) An effective feature learning approach using genetic programming with image descriptors for image classification [research frontier]. IEEE Comput Intell Mag 15(2):65–77

    Article  Google Scholar 

  6. Bruna J, Mallat S (2013) Invariant scattering convolution networks. IEEE Trans Pattern Anal Mach Intell 35(8):1872–1886

    Article  Google Scholar 

  7. Cai L, Zhu J, Zeng H, Chen J, Cai C, Ma KK (2018) Hog-assisted deep feature learning for pedestrian gender recognition. J Frankl Inst 355(4):1991–2008

    Article  Google Scholar 

  8. Chan TH, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2015) Pcanet: a simple deep learning baseline for image classification? IEEE Trans Image Process 24(12):5017–5032

    Article  MathSciNet  Google Scholar 

  9. Chollet F et al. (2015) Keras. https://keras.io

  10. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 1:886–893

    Google Scholar 

  11. Fei-Fei L, Perona P (2005) A bayesian hierarchical model for learning natural scene categories. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2:524–531

    Google Scholar 

  12. Fortin FA, De Rainville FM, Gardner MA, Parizeau M, Gagné C (2012) DEAP: Evolutionary algorithms made easy. J Mach Learn Res 13(Jul):2171–2175

    Google Scholar 

  13. Hassaballah M, Abdelmgeid AA, Alshazly HA (2016) Image features detection, description and matching. In: Image feature detectors and descriptors. Springer, pp 11–45

    Google Scholar 

  14. Iqbal M, Xue B, Al-Sahaf H, Zhang M (2017) Cross-domain reuse of extracted knowledge in genetic programming for image classification. IEEE Trans Evolut Comput 21(4):569–587

    Article  Google Scholar 

  15. Larochelle H, Erhan D, Courville A, Bergstra J, Bengio Y (2007) An empirical evaluation of deep architectures on problems with many factors of variation. In: Proceedings of the 24th International Conference on Machine Learning. ACM, pp 473–480

    Google Scholar 

  16. Li H, Gong M (2017) Self-paced convolutional neural networks. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp 2110–2116

    Google Scholar 

  17. Liu C, Wechsler H (2002) Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans Image Process 11(4):467–476

    Article  Google Scholar 

  18. Liu L, Shao L, Li X, Lu K (2016) Learning spatio-temporal representations for action recognition: a genetic programming approach. IEEE Trans Cybernet 46(1):158–170

    Article  Google Scholar 

  19. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  20. Lvd Maaten, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9:2579–2605

    MATH  Google Scholar 

  21. Mallikarjuna P, Targhi AT, Fritz M, Hayman E, Caputo B, Eklundh JO (2006) The kth-tips2 database. Computational Vision and Active Perception Laboratory (CVAP), Stockholm, Sweden. http://www.nada.kth.se/cvap/databases/kth-tips

  22. Montana DJ (1995) Strongly typed genetic programming. Evolut Comput 3(2):199–230

    Article  Google Scholar 

  23. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  24. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    MathSciNet  MATH  Google Scholar 

  25. Qian G, Zhang L (2018) A simple feedforward convolutional conceptor neural network for classification. Appl Soft Comput 70:1034–1041

    Article  Google Scholar 

  26. Rifai S, Vincent P, Muller X, Glorot X, Bengio Y (2011) Contractive auto-encoders: explicit invariance during feature extraction. In: Proceedings of international conference on machine learning. Omnipress, pp 833–840

    Google Scholar 

  27. Roberts ME (2003) The effectiveness of cost based subtree caching mechanisms in typed genetic programming for image segmentation. In: Proceedings of workshops on applications of evolutionary computation. Springer, pp 444–454

    Google Scholar 

  28. Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identification. In: Proceedings of 1994 IEEE workshop on applications of computer vision, pp 138–142

    Google Scholar 

  29. Shao L, Liu L, Li X (2014) Feature learning for image classification via multiobjective genetic programming. IEEE Trans Neural Netw Learn Syst 25(7):1359–1371

    Article  Google Scholar 

  30. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    MathSciNet  MATH  Google Scholar 

  31. Sun Y, Xue B, Zhang M, Yen GG (2019) Evolving deep convolutional neural networks for image classification. IEEE Trans Evolut Comput 24(2):1–14

    Google Scholar 

  32. Thomaz CE (2012) Fei face database. http://fei.edu.br/~cet/facedatabase.html

  33. Vedaldi A, Fulkerson B (2010) Vlfeat: an open and portable library of computer vision algorithms. In: Proceedings of the 18th ACM international conference on multimedia, pp 1469–1472

    Google Scholar 

  34. Young S, Abdou T, Bener A (2018) Deep super learner: a deep ensemble for classification problems. In: Proceedings of Canadian conference on artificial intelligence. Springer, pp 84–95

    Google Scholar 

  35. Yu T, Guo C, Wang L, Xiang S, Pan C (2018) Self-paced autoencoder. IEEE Signal Process Lett 25(7):1054–1058

    Article  Google Scholar 

  36. Zhou ZH, Feng J (2018) Deep forest. Natl Sci Rev 6(1):74–86

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Bi .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bi, Y., Xue, B., Zhang, M. (2021). GP with Image-Related Operators for Feature Learning. In: Genetic Programming for Image Classification. Adaptation, Learning, and Optimization, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-65927-1_7

Download citation

Publish with us

Policies and ethics