Skip to main content

Salt-Tolerant and Plant Growth-Promoting Rhizobacteria: A New-Fangled Approach for Improving Crop Yield

  • Chapter
  • First Online:
Harsh Environment and Plant Resilience

Abstract

Environmental pollution and climate change have been an ablaze issue in recent times. This is correlated with increasing soil infertility. Increase in soil salinity, a major abiotic stress, is the main reasons for soil infertility affecting crop productivity worldwide. About 22% cultivated lands and 33% of the irrigated fields are affected by high concentration of salt. Almost every year, 1–2% cultivated lands are reduced due to the soil salinization. It is also reported by several researchers that half of the fertile land will become saline by 2050. Salinity stress can elevate the ionic stress and osmotic stress which can induce to accumulate the reactive oxygen species (ROS). Salinity inhibits plant photosynthesis, protein synthesis, and lipid metabolism. Plant growth-promoting rhizobacteria (PGPR) are a group of bacteria that colonize in plant roots and enhance the plant growth by wide variety of mechanism like producing indoleacetic acid (IAA), gibberellic acid, siderophore, ACC deaminase, hydrogen cyanate (HCN), etc. PGPRs have some beneficial role to cope up with the salinity stress and increase the crop productivity in various ways. Recent studies have revealed that PGPR can increase proline content, plant biomass, nutrient uptake, osmolytes accumulation, antioxidants, and photosynthesis. Envisioning the potentiality of PGPR to restore soil fertility, a comprehensive discussion on amelioration of salinity stress by PGPR is intended. In this chapter, an attempt has been made to explore the beneficial effects of PGPR in plant-microbe interaction in connection with salinity stress to understand its application to mitigate salinity stress in soil and improve crop yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelgadir E, Oka M, Fujiyama HJ (2005) Characteristics of nitrate uptake by plants under salinity. J Plant Nutr 28:33–46

    Article  CAS  Google Scholar 

  • Abogadallah GM (2010) Insights into the significance of antioxidative defense under salt stress. Plant Signal Behav 5:369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal P, Agrawal S, Kundan R, Bhatt M (2014) Application and perspective of plant growth promoting rhizobacteria in development of sustainable agriculture. Int J Curr Res 6:9044–9051

    Google Scholar 

  • Agrawal T, Kotasthane AS, Kosharia A, Kushwah R, Zaidi NW, Singh US (2017) Crop specific plant growth promoting effects of ACCd enzyme and siderophore producing and cynogenic fluorescent Pseudomonas. 3 Biotech 7:27

    PubMed  PubMed Central  Google Scholar 

  • Ahanger MA, Qin C, Begum N, Maodong Q, Dong XX, El-Esawi M, El-Sheikh MA, Alatar AA, Zhang L (2019) Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation. BMC Plant Biol 19:1–12

    Article  CAS  Google Scholar 

  • Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176

    Google Scholar 

  • Ahmadi J, Asgharzadeh A, Bakhtiari S (2013) The effect of microbial inoculants on physiological responses of two wheat cultivars under salt stress. Int J Adv Biol 4:364–371

    Google Scholar 

  • Akbari A, Gharanjik S, Koobaz P, Sadeghi A (2020) Plant growth promoting Streptomyces strains are selectively interacting with the wheat cultivars especially in saline conditions. Heliyon 6:eo3445

    Google Scholar 

  • Albdaiwi RN, Khyami-Horani H, Ayad JY (2019) Plant growth-promoting Rhizobacteria: an emerging method for the enhancement of wheat tolerance against salinity stress. J Biol Sci 12:525–534

    Google Scholar 

  • Allam NG, Kinany R, El-Refai E, Ali WY (2018) Potential use of beneficial salt tolerant bacteria for improving wheat productivity grown in salinized soil. Res J Microbiol 8:43–53

    Google Scholar 

  • Almansouri M, Kinet J-M, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231:243–254

    Article  CAS  Google Scholar 

  • Ansari M, Shekari F, Mohammadi MH, Juhos K, Vegvari G, Biro B (2019) Salt-tolerant plant growth-promoting bacteria enhanced salinity tolerance of salt-tolerant alfalfa (Medicago sativa L.) cultivars at high salinity. Acta Physiol Plant 41:195

    Article  CAS  Google Scholar 

  • Arora NK, Fatima T, Mishra J, Mishra I, Verma S, Verma R, Verma M, Bhattacharya A, Verma P, Mishra P, Bharti C (2020) Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. J Adv Res 26:69–82

    Article  CAS  Google Scholar 

  • Ashraf M, Shahzad SM, Imtiaz M, Rizwan MS (2018) Salinity effects on nitrogen metabolism in plants–focusing on the activities of nitrogen metabolizing enzymes: a review. J Plant Nutr 41:1065–1081

    Article  CAS  Google Scholar 

  • Batanouny KH (1993) Adaptation of plants to saline conditions in arid regions. In: Lieth H, Al Masoom AA (eds) Towards the rational use of high salinity tolerant plants, Tasks for vegetation science, vol 27. Springer, Dordrecht, pp 387–401

    Chapter  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi Y, Chen W, Zhang W, Zhou Q, Yun L, Xing D (2009) Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmium-induced cell death in Arabidopsis thaliana. Biol Cell 101:629–643

    Article  CAS  PubMed  Google Scholar 

  • Bottini R, Cassan F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol 65:497–503

    CAS  Google Scholar 

  • Bruning B, Rozema J (2013) Symbiotic nitrogen fixation in legumes: perspectives for saline agriculture. Environ Exp 92:134–143

    Article  CAS  Google Scholar 

  • Chakraborty U, Roy S, Chakraborty AP, Dey P, Chakraborty B (2011) Plant growth promotion and amelioration of salinity stress in crop plants by a salt-tolerant bacterium. Recent Res Sci 3(11):61–70

    CAS  Google Scholar 

  • Chakraborty U, Chakraborty B, Dey P, Chakraborty A (2018) Bacillus safensis from wheat rhizosphere promotes growth and ameliorates salinity stress in wheat. Indian J Biotechnol 17:466–479

    CAS  Google Scholar 

  • Chandrasekaran M, Chun SC, Oh JW, Paramasivan M, Saini RK, Sahayarayan J (2019) Bacillus subtilis CBR05 for tomato (Solanum lycopersicum) fruits in South Korea as a novel plant probiotic bacterium (PPB): Implications from Total Phenolics, flavonoids, and carotenoids content for fruit quality. J Agron 9:838

    Google Scholar 

  • Chen L, Dodd IC, Theobald JC, Belimov AA, Davies WJ (2013) The rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway. J Exp Bot 64:1565–1573

    Google Scholar 

  • Chen L, Liu Y, Wu G, Veronican Njeri K, Shen Q, Zhang N, Zhang R (2016) Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol Plant 158:34–44

    Article  CAS  PubMed  Google Scholar 

  • Cohen SP, Leach JE (2019) Abiotic and biotic stresses induce a core transcriptome response in rice. Sci Rep 9:1–11

    Article  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Physiol Plant 31:861–864

    CAS  Google Scholar 

  • Egamberdieva D, Wirth SJ, Alqarawi AA, Abd-Allah EF, Hashem A (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:2104

    Article  PubMed  PubMed Central  Google Scholar 

  • Eskandari Torbaghan M, Lakziyan A, Astaraei AR, Fotovat A, Besharati H (2017) Measurement of ACC-deaminase production in halophilic, Alkalophilic and Haloalkalophilic bacterial isolates in soil. Int Biol Biomed 3(4):194–202

    Google Scholar 

  • Ferreira MJ, Silva H, Cunha A (2019) Siderophore-producing Rhizobacteria as a promising tool for empowering plants to cope with Iron limitation in saline soils: a review. Pedosphere 29:409–420

    Article  Google Scholar 

  • Fu Q, Liu C, Ding N, Lin Y, Guo B (2010) Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agric Water Manag 97:1994–2000

    Google Scholar 

  • Gamalero E, Bona E, Todeschini V, Lingua G (2020) Saline and arid soils: impact on Bacteria, plants, and their interaction. Biology 9:116

    Article  CAS  PubMed Central  Google Scholar 

  • Ghosh B, Md NA, Gantait S (2016) Response of rice under salinity stress: a review update. Rice Res 4:167

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2004) Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol 56:291–312

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. J Sci 2012:1–15

    Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, Mcconkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  PubMed  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. Appl Biochem Micro 7:096–102

    CAS  Google Scholar 

  • Gupta S, Kaushal R, Sood G, Dipta B, Kirti S, Spehia R (2019) Water stress amelioration and plant growth promotion in Capsicum plants by osmotic stress tolerant Bacteria. Plant Soil 29:1–12

    Google Scholar 

  • Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int 2016:6284547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamdia MAE-S, Shaddad M, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174

    Google Scholar 

  • He M, He C-Q, Ding N-Z (2018) Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Plant Sci 9:1771

    Google Scholar 

  • Hnilickova H, Hnilicka F, Martinkova J, Kraus KJP (2017) Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. Plant Soil Environ 63:362–367

    Article  CAS  Google Scholar 

  • Hol W, Bezemer TM, Biere A (2013) Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Plant Sci 4:81

    Google Scholar 

  • Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, Keller WA, Selvaraj G (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Physiol Plant 122:747–756

    Article  CAS  Google Scholar 

  • Ijaz B, Formentin E, Ronci B, Locato V, Barizza E, Hyder MZ, Schiavo FL, Yasmin T (2019) Salt tolerance in indica rice cell cultures depends on a fine tuning of ROS signalling and homeostasis. PLoS One 14:e0213986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Plant Sci 8:1768

    Google Scholar 

  • Islam F, Yasmeen T, Arif MS, Ali S, Ali B, Hameed S, Zhou W (2016) Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regul 80:23–36

    Article  CAS  Google Scholar 

  • Jha CK, Saraf M (2015) Plant growth promoting rhizobacteria (PGPR): a review. J Agric Res 5:108–119

    Google Scholar 

  • Jiang Q, Hu Z, Zhang H, Ma Y (2014) Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity. J Crop Prod 2:120–131

    Article  Google Scholar 

  • Jiang H, Qi P, Wang T, Wang M, Chen M, Chen N, Pan L, Chi X (2018) Isolation and characterization of halotolerant phosphate-solubilizing microorganisms from saline soils. 3 Biotech 8:461

    Article  PubMed  PubMed Central  Google Scholar 

  • Joo G-J, Kim Y-M, Kim J-T, Rhee I-K, Kim J-H, Lee I-J (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. Res J Microbiol 43:510

    CAS  Google Scholar 

  • Kadmiri IM, Chaouqui L, Azaraual SE, Sijilmassi B, Yaakoubi K, Wahby I (2018) Phosphate-solubilizing and auxin-producing rhizobacteria promote plant growth under saline conditions. Arab J Sci Eng 43:3403–3415

    Article  CAS  Google Scholar 

  • Kamran M, Parveen A, Ahmar S, Malik Z, Hussain S, Chattha MS, Saleem MH, Adil M, Heidari P, Chen J-T (2020) An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. Int J Mol 21:148

    Article  CAS  Google Scholar 

  • Kang S-M, Waqas M, Hamayun M, Asaf S, Khan AL, Kim A-Y, Park Y-G, Lee I-J (2017) Gibberellins and indole-3-acetic acid producing rhizospheric bacterium Leifsonia xyli SE134 mitigates the adverse effects of copper-mediated stress on tomato. J Plant Interact 12:373–380

    Google Scholar 

  • Kasotia A, Varma A, Choudhary DK (2015) Pseudomonas-mediated mitigation of salt stress and growth promotion in Glycine max. Int J Agric Res 4:31–41

    Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229

    Article  CAS  PubMed  Google Scholar 

  • Kenneth OC, Nwadibe EC, Kalu AU, Unah UV (2019) Plant growth promoting rhizobacteria (PGPR): a novel agent for sustainable food production. Am J Agric Biol Sci 14:35–54

    Article  CAS  Google Scholar 

  • Ketehouli T, Carther I, Foka K, Noman M, Wang F-W, Li X-W, Li H-Y (2019) Adaptation of plants to salt stress: characterization of Na+ and K+ transporters and role of CBL gene family in regulating salt stress response. J Agron 9:687

    CAS  Google Scholar 

  • Khalilzadeh R, Seyed Sharifi R, Jalilian J (2016) Antioxidant status and physiological responses of wheat (Triticum aestivum L.) to cycocel application and bio fertilizers under water limitation condition. J Plant Interact 11:130–137

    Article  CAS  Google Scholar 

  • Khalipe S, Kalibag G, Gore N, Bhavar Y, Harke S (2018) Effect of Salinity Stress on Soluble Protein of wheat (Triticum aestivum L.) varieties. Adv Biores 9:181–186

    Google Scholar 

  • Kuan KB, Othman R, Abdul Rahim K, Shamsuddin ZH (2016) Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS One 11:e0152478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar A, Verma JP (2018) Does plant—microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Bahadur I, Maurya B, Raghuwanshi R, Meena V, Singh D, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability. J Pure Appl Microbiol 9:715–724

    Google Scholar 

  • Kumari BJ (2015) A critical review on plant growth promoting Rhizobacteria. Plant Pathol Microbiol 6:266

    Google Scholar 

  • Li W, Li Q (2017) Effect of environmental salt stress on plants and the molecular mechanism of salt stress tolerance. Int J Environ Sci Nat Res 7:1–6

    Google Scholar 

  • Llanes A, Reginato M, Deviner G, Luna (2018) What is known about phytohormones in halophytes? A review. J Biol 73:727–742

    Google Scholar 

  • Mabood F, Zhou X, Smith DL (2014) Microbial signaling and plant growth promotion. Can J Plant Sci 94:1051–1063

    Article  CAS  Google Scholar 

  • Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Hort J 3:30

    Google Scholar 

  • Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:876

    Article  PubMed  PubMed Central  Google Scholar 

  • Marakana T, Sharma M, Sangani K (2018) Isolation and characterization of halotolerant bacteria and its effects on wheat plant as PGPR. J Pharma Innov 7(7):102–110

    Google Scholar 

  • Najar R, Aydi S, Sassi-Aydi S, Zarai A, Abdelly C (2019) Effect of salt stress on photosynthesis and chlorophyll fluorescence in Medicago truncatula. Plant Biosyst 153:88–97

    Google Scholar 

  • Nascimento FX, Brigido C, Glick BR, Rossi M (2016) The role of rhizobial ACC deaminase in the nodulation process of leguminous plants. Int J Agron 2016:1–9

    Article  CAS  Google Scholar 

  • Naveed M, Sajid H, Mustafa A, Niamat B, Ahmad Z, Yaseen M, Kamran M, Rafique M, Ahmar S, Chen J-T (2020) Alleviation of salinity-induced oxidative stress, improvement in growth, physiology and mineral nutrition of Canola (Brassica napus L.) through calcium-fortified composted animal manure. Sustainability 12:846

    Article  CAS  Google Scholar 

  • Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15:327–337

    Google Scholar 

  • Noumavo PA, Agbodjato NA, Baba-Moussa F, Adjanohoun A, Baba-Moussa L (2016) Plant growth promoting rhizobacteria: beneficial effects for healthy and sustainable agriculture. Afr J Biotechnol 15:1452–1463

    Article  CAS  Google Scholar 

  • Odoh CK (2017) Plant growth promoting rhizobacteria (PGPR): a bioprotectant bioinoculant for sustainable agrobiology. A review. Int J Adv 4:123–142

    CAS  Google Scholar 

  • Omoto E, Iwasaki Y, Miyake H, Taniguchi M (2016) Salinity induces membrane structure and lipid changes in maize mesophyll and bundle sheath chloroplasts. Physiol Plant 157:13–23

    Article  CAS  PubMed  Google Scholar 

  • Ordookhani K, Khavazi K, Moezzi A, Rejali F (2010) Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. Afr J Agric Res 5:1108–1116

    Google Scholar 

  • Orhan F (2016) Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Braz J Microbiol 47:621–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osmolovskaya N, Shumilina J, Bureiko K, Chantseva V, Bilova T, Kuchaeva L, Laman N, Wessjohann LA, Frolov A (2019) Ion homeostasis response to nutrient-deficiency stress in plants. Cell growth. Intech Open: London, UK

    Google Scholar 

  • Palaniyandi S, Damodharan K, Yang S, Suh J (2014) Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’ tomato plants. J Appl Microbiol 117:766–773

    Google Scholar 

  • Pandey S, Gupta S (2019) ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front Microbiol 10:1506

    Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pol 22:4056–4075

    Article  CAS  Google Scholar 

  • Patel TS, Minocheherhomji FP (2018) Plant growth promoting Rhizobacteria: blessing to agriculture. Int J Pure App Biosci 6:481–492

    Article  Google Scholar 

  • Perez-Montano F, Alias-Villegas C, Bellogin R, Del Cerro P, Espuny M, Jimenez-Guerrero I, Lopez-Baena FJ, Ollero F, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Int J Microbiol Res 169:325–336

    CAS  Google Scholar 

  • Pessarakli M, Haghighi M, Sheibanirad A (2015) Plant responses under environmental stress conditions. Int J Adv 2:276–286

    Google Scholar 

  • Pirhadi M, Enayatizamir N, Motamedi H, Sorkheh K (2018) Impact of soil salinity on diversity and community of sugarcane endophytic plant growth promoting bacteria (Saccharum officinarum L. Var. CP48). J Appl Ecol Environ 16:725–739

    Google Scholar 

  • Queiroz HM, Sodek L, Haddad CRB (2012) Effect of salt on the growth and metabolism of Glycine max. Braz Arch Biol Technol 55:809–817

    Article  CAS  Google Scholar 

  • Racagni G, Pedranzani H, Alemano S, Taleisnik E, Abdala G, Machado-Domenech E (2003) Effect of short-term salinity on lipid metabolism and ion accumulation in tomato roots. Biol Plant 47:373

    Article  CAS  Google Scholar 

  • Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springer Plus 2:6

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rathore P (2014) A review on approaches to develop plant growth promoting rhizobacteria. Int J Recent Sci 5:403–407

    Google Scholar 

  • Rijavec T, Lapanje A (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Int J Microbiol Res 7:1785

    Google Scholar 

  • Santos ADA, Silveira JAGD, Bonifacio A, Rodrigues AC, Figueiredo MDVB (2018) Antioxidant response of cowpea co-inoculated with plant growth-promoting bacteria under salt stress. Braz J Microbiol 49:513–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sathya A, Vijayabharathi R, Gopalakrishnan S (2017) Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3. Biotech 7:1–10

    Google Scholar 

  • Sen S, Chandrasekhar C (2014) Effect of PGPR on growth promotion of rice (Oryza sativa L.) under salt stress. Asian J Plant Sci 4:62–67

    Google Scholar 

  • Sharma S, Kaur M (2017) Plant hormones synthesized by microorganisms and their role in biofertilizer—a review article. Int J Adv Res 5:1753–1762

    Article  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Shu S, Guo SR, Sun J, Yuan LY (2012) Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. Physiol Plant 146:285–296

    Google Scholar 

  • Shu K, Qi Y, Chen F, Meng Y, Luo X, Shuai H, Zhou W, Ding J, Du J, Liu J (2017) Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis. Front Plant Sci 8:1372

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh I (2018) Plant growth promoting Rhizobacteria (PGPR) and their various mechanisms for plant growth enhancement in stressful conditions: a review. Eur J Biol Res 8:191–213

    CAS  Google Scholar 

  • Singh J, Thakur JK (2018) Photosynthesis and abiotic stress in plants. Biotic and abiotic stress tolerance in plants. Springer: Singapore

    Google Scholar 

  • Sinha S, Mukherjee SK (2008) Cadmium–induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56:55–60

    Article  CAS  PubMed  Google Scholar 

  • Sivasakti S, Saranraj P, Sivasakthivelan P (2017) Biological nitrogen fixation by Azotobacter sp.—a review. Indo Asian J Multidiscip Res 3:1274–1284

    Google Scholar 

  • Soltani A-A, Khavazi K, Asadi-Rahmani H, Omidvari M, Dahaji PA, Mirhoseyni H (2010) Plant growth promoting characteristics in some Flavobacterium spp. isolated from soils of Iran. J Agric Sci 2:106

    Google Scholar 

  • Stavridou E, Hastings A, Webster RJ, Robson PR (2017) The impact of soil salinity on the yield, composition and physiology of the bioenergy grass Miscanthus giganteus. GCB Bioenergy 9:92–104

    Article  CAS  Google Scholar 

  • Sudhir P, Murthy S (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486

    Article  CAS  Google Scholar 

  • Suleman M, Yasmin S, Rasul M, Yahya M, Atta BM, Mirza MS (2018) Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat. PLoS One 13:e0204408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sultana N, Ikeda T (1999) Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environ Exp 42:211–220

    Article  CAS  Google Scholar 

  • Surjus A, Durand M (1996) Lipid changes in soybean root membranes in response to salt treatment. J Exp Bot 47:17–23

    Article  CAS  Google Scholar 

  • Tang X, Mu X, Shao H, Wang H, Brestic M (2015) Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol 35:425–437

    Article  PubMed  CAS  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58

    Article  CAS  Google Scholar 

  • Tripathy BC, Oelmuller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7:1621–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukanova K, Meyer J, Bibikova T (2017) Effect of plant growth-promoting Rhizobacteria on plant hormone homeostasis. S Afr J Bot 113:91–102

    Article  CAS  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moenne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dye F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaishnav A, Singh J, Singh P, Rajput RS, Singh HB, Sarma BK (2020) Sphingobacterium sp. BHU-AV3 induces salt tolerance in tomato by enhancing antioxidant activities and energy metabolism. Front Microbiol 11:1–13

    Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21:573

    Article  PubMed Central  CAS  Google Scholar 

  • Verma J, Yadav J, TiwariI K, Lavakush S, Singh V (2010) Impact of plant growth promoting rhizobacteria on crop production. J Agric Res 5:954–983

    Google Scholar 

  • Vijay K, Nivedita S, Parmar Y (2017) Plant growth promoting rhizobacteria as growth promoters for wheat: a review. Agric Res Tech 12:555–857

    Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay R, Pandey M (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Waqas MA, Kaya C, Riaz A, Li YE (2019) Potential mechanisms of abiotic stress tolerance in crop plants induced by Thiourea. Front Plant Sci 10:1336

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie X, He Z, Chen N, Tang Z, Wang Q, Cai Y (2019) The roles of environmental factors in regulation of oxidative stress in plant. Biomed Res Int 2019:9732325

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Li J-L, Liu L-N, Xie Q, Sui N (2020) Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet sorghum. Front Plant Sci 10:1722

    Article  PubMed  PubMed Central  Google Scholar 

  • Yasmin H, Naeem S, Bakhtawar M, Jabeen Z, Nosheen A, Naz R, Keyani R, Mumtaz S, Hassan MN (2020) Halotolerant rhizobacteria Pseudomonas pseudoalcaligenes and Bacillus subtilis mediate systemic tolerance in hydroponically grown soybean (Glycine max L.) against salinity stress. PLoS One 15(4):e0231348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamani S, Bybordi A, Khorshidi S, Nezami T (2010) Effects of NaCl salinity levels on lipids and proteins of canola (Brassica napus L.) cultivars. Adv Environ Biol 4:397–403

    CAS  Google Scholar 

  • Zandi P, Chalaras SK (2014) The importance of Plant Growth Promoting Rhizobacteria (PGPR) In Health And Productivity Of Agro-Ecosystems. Book of proceedings: Fifth International Scientific Agricultural Symposium “Agrosym 2014”, Jahorina, Bosnia and Herzegovina, October 23–26, 2014. University of East Sarajevo, Faculty of Agriculture, pp 599–603

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, S., Bhattacharjya, D., Sinha, S., Mandal, A.K. (2021). Salt-Tolerant and Plant Growth-Promoting Rhizobacteria: A New-Fangled Approach for Improving Crop Yield. In: Husen, A. (eds) Harsh Environment and Plant Resilience. Springer, Cham. https://doi.org/10.1007/978-3-030-65912-7_15

Download citation

Publish with us

Policies and ethics