Skip to main content

Smart Contracts in Healthcare

  • Chapter
  • First Online:
Digitalization in Healthcare

Part of the book series: Future of Business and Finance ((FBF))

Abstract

Decentralized digital ledger technology (DLT) archives data transparent and immutable with a trustless encrypted protocol and a consensus mechanism. It allows secure, public or private transactions with or without anonymity, depending on the blockchain. Smart contracts consist of code that can be executed in a DLT environment. The smart contracts technology enables the development of decentralized apps (DApps) who can interact directly with the blockchain and support on-chain storage. DLT with smart contracts and DApps could solve key challenges in healthcare ecosystems, i.e. healthcare interoperability, multi-center-studies with automatic patient acquisition by smart contracts, patient-centric identification and authentication, pharmacovigilance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • American Recovery and Reinvestment Act of 2009 (ARRA). (2009). Retrieved September 25, 2020, from https://www.govinfo.gov/content/pkg/PLAW-111publ5/pdf/PLAW-111publ5.pdf

  • Antonopoulos, A. M., & Wood, G. (2019). Mastering Ethereum: Building Smart Contracts and DApps. O’Reilly Media.

    Google Scholar 

  • Ash, J. S., Berg, M., & Coiera, E. (2004). Some unintended consequences of information technology in health care: The nature of patient care information system-related errors. Journal of the American Medical Informatics Association, 11(2), 104–112.

    Article  Google Scholar 

  • Boulos, M. N. K., Wilson, J. T., & Clauson, K. A. (2018). Geospatial blockchain: Promises, challenges, and scenarios in health and healthcare. International Journal of Health Geographics, 17, 25.

    Article  Google Scholar 

  • Brennan, B. (2017). Blockchain HIE overview: A framework for healthcare interoperability. Telehealth and Medicine Today, 2, 3.

    Google Scholar 

  • Carson, B., Romanelli, G., Walsh, P., & Zhumaev, A. (2018). Blockchain beyond the hype: What is the strategic business value. McKinsey & Company. Retrieved September 30, 2020, from https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/blockchain-beyond-the-hype-what-is-the-strategic-business-value

  • Chainlink. (2020). Retrieved September 29, 2020, from https://chain.link/

  • Constand, M. K., MacDermid, J. C., Dal Bello-Haas, V., & Law, M. (2014). Scoping review of patient-centered care approaches in healthcare. BMC Health Services Research, 14, 271.

    Article  Google Scholar 

  • DApp.com. (2020). Retrieved September 25, 2020, from http://www.dApp.com

  • Deloitte. (2018). IT im Krankenhaus – Zwischen neuen Herausforderungen und Chancen. o.O. Deloitte.

    Google Scholar 

  • Dimitrov, D. V. (2019). Blockchain applications for healthcare data management. Healthcare Informatics Research, 25, 51–56.

    Article  Google Scholar 

  • Estonia Health Ministry. (2020). Retrieved September 25, 2020, from https://e-estonia.com/solutions/healthcare/

  • Ethereum. (2020). Retrieved September 29, 2020, from https://ethereum.org/en/

  • GDPR. (2020). Retrieved September 25, 2020, from https://gdpr.eu/

  • Geraci, A., Katki, F., McMonegal, L., Meyer, B., Lane, J., Wilson, P., Radatz, J., Yee, M., Porteous, H., & Springsteel, F. (1991). IEEE standard computer dictionary: Compilation of IEEE standard computer glossaries. IEEE Press.

    Google Scholar 

  • German Health Ministry. (2020a). Retrieved September 25, 2020, from https://www.bundesgesundheitsministerium.de/krankenhauszukunftsgesetz.html

  • German Health Ministry. (2020b). Retrieved September 25, 2020, from https://www.bundesgesundheitsministerium.de/service/begriffe-von-a-z/e/elektronische-patientenakte.html

  • Greenberger, M. (2019). Block what? The unrealized potential of blockchain in healthcare. Nursing Management, 50, 9–12.

    Article  Google Scholar 

  • HIPAA. (2020). Retrieved September 25, 2020, from https://www.hhs.gov/hipaa/index.html

  • HL7. (2020). Retrieved September 29, 2020, from https://www.hl7.org/

  • Hou, H. (2017). The application of blockchain technology in E-government in China. In Computer Communication and Networks (ICCCN), 26th International Conference on IEEE.

    Google Scholar 

  • Johnston, D., Yilmaz, S. O., Kandah, J., Bentenitis, N., Hashemi, F., Gross, R., Wilkinson, S., & Mason, S. (2014). The general theory of decentralized applications, dApps (Vol. 9). GitHub, June.

    Google Scholar 

  • Khatoon, A. (2020). A blockchain-based smart contract system for healthcare management. Electronics, 9, 94.

    Article  Google Scholar 

  • Kshetri, N. (2018). Blockchain and electronic healthcare records. Computer, 51, 59–63.

    Article  Google Scholar 

  • Kuo, T. T., Kim, H., & Ohno-Machado, L. (2017). Blockchain distributed ledger technologies for biomedical and health care applications. Journal of the American Medical Informatics Association, 24, 1211–1220.

    Article  Google Scholar 

  • Kuo, T. T., & Ohno-Machado, L. (2018). Modelchain: Decentralized privacy-preserving healthcare predictive modeling framework on private blockchain networks. arXiv.

    Google Scholar 

  • Li, D. (2019). 5G and intelligence medicine-how the next generation of wireless technology will reconstruct healthcare? Precision Clinical Medicine, 2(4), 205–208.

    Article  Google Scholar 

  • Liu, V., Musen, M. A., & Chou, T. (2015). Data breaches of protected health information in the United States. JAMA, 313(14), 1471–1473.

    Article  Google Scholar 

  • McGhin, T., Choo, K. K. R., Liu, C. Z., & He, D. (2019). Blockchain in healthcare applications: Research challenges and opportunities. Journal of Network and Computer Applications, 135, 62–75.

    Article  Google Scholar 

  • Mohanty, D. (2018). Ethereum for architects and developers: With case studies and code samples in solidity (pp. 40–41). Apress.

    Google Scholar 

  • Nakamoto, S. (2009). Bitcoin: A peer-to-peer electronic cash system. Retrieved September 24, 2020, from http://www.bitcoin.org/bitcoin.pdf

  • Oates, J., Weston, W. W., & Jordan, J. (2000). The impact of patient-centered care on outcomes. Family Practice, 49, 796–804.

    Google Scholar 

  • Radanovic, I., & Likic, R. (2018). Opportunities for use of blockchain technology in medicine. Applied Health Economics and Health Policy, 16, 583–590.

    Article  Google Scholar 

  • Randall, D., Goel, P., & Abujamra, R. (2017). Blockchain applications and use cases in health information technology. Journal of Health and Medical Informatics, 8, 2.

    Article  Google Scholar 

  • Reynolds, A. (2009). Patient-centered care. Radiologic Technology, 81(2), 133–147.

    Google Scholar 

  • Roehrs, A., da Costa, C.A., & da Rosa Righi, R. (2017). OmniPHR: A distributed architecture model to integrate personal health records. Journal of Biomedical Informatics.

    Google Scholar 

  • SiaCoin, Swarm, & Ethereum. (2020). Retrieved September 30, 2020, from https://sia.tech; https://swarm-guide.readthedocs.io/en/latest/index.html; https://swarm-guide.readthedocs.io/en/latest/architecture.html; https://github.com/ethereum/wiki/wiki/Sharding-FAQ

  • Skiba, D. J. (2017). The potential of blockchain in education and health care. Nursing Education Perspectives, 38, 220–221.

    Article  Google Scholar 

  • Stawicki, S. P., Firstenberg, M. S., & Papadimos, T. J. (2018). What’s new in academic medicine? Blockchain technology in health-care: Bigger, better, fairer, faster, and leaner. International Journal of Academic Medicine, 4(1), 11.

    Google Scholar 

  • Szabo, N. (1994). Smart contracts. Retrieved September 24, 2020, from http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool 2006/szabo.best.vwh.net/smart.contracts.html

  • Yano, M., Dai, C., Maduda, K., & Kishimoto, Y. (2020). Blockchain and crypt currency (pp. 77–94). Springer.

    Google Scholar 

  • Zhang, P., Walker, M., White, J., & Schmidt, D. C. (2017). Metrics for assessing blockchain-based healthcare decentralized apps (pp. 1–4). IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schnitzbauer, M. (2021). Smart Contracts in Healthcare. In: Glauner, P., Plugmann, P., Lerzynski, G. (eds) Digitalization in Healthcare. Future of Business and Finance. Springer, Cham. https://doi.org/10.1007/978-3-030-65896-0_19

Download citation

Publish with us

Policies and ethics