Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
Book cover

Paul Lorenzen -- Mathematician and Logician pp 77–102Cite as

  1. Home
  2. Paul Lorenzen -- Mathematician and Logician
  3. Chapter
Syntax for Semantics: Krull’s Maximal Ideal Theorem

Syntax for Semantics: Krull’s Maximal Ideal Theorem

  • Peter Schuster22 &
  • Daniel Wessel22 
  • Chapter
  • Open Access
  • First Online: 18 August 2021
  • 1368 Accesses

  • 2 Citations

  • 1 Altmetric

Part of the Logic, Epistemology, and the Unity of Science book series (LEUS,volume 51)

Abstract

Krull’s Maximal Ideal Theorem (MIT) is one of the most prominent incarnations of the Axiom of Choice (AC) in ring theory. For many a consequence of AC, constructive counterparts are well within reach, provided attention is turned to the syntactical underpinning of the problem at hand. This is one of the viewpoints of the revised Hilbert Programme in commutative algebra, which will here be carried out for MIT and several related classical principles.

Download chapter PDF

References

  • Aczel, P. (1978). The type theoretic interpretation of constructive set theory. In Logic Colloquium ’77 (Proceedings of the Conference on Wrocław, 1977), volume 96 of Studies in logic and the foundations of mathematics (pp. 55–66). Amsterdam: North-Holland.

    Google Scholar 

  • Aczel, P. (1982). The type theoretic interpretation of constructive set theory: Choice principles. In The L. E. J. Brouwer centenary symposium (Noordwijkerhout, 1981) of studies in logic and the foundations of mathematics (Vol. 110, pp. 1–40). Amsterdam: North-Holland.

    Google Scholar 

  • Aczel, P. (1986). The type theoretic interpretation of constructive set theory: Inductive definitions. In Logic, methodology and philosophy of science,vii (Salzburg, 1983), volume 114 of Studies in logic and the foundations of mathematics (pp. 17–49). Amsterdam: North-Holland.

    Google Scholar 

  • Aczel, P. (2006). Aspects of general topology in constructive set theory. Annals of Pure and Applied Logic, 137(1–3), 3–29.

    CrossRef  Google Scholar 

  • Aczel, P., & Rathjen, M. (2000). Notes on constructive set theory (p. 40). Technical report, Institut Mittag-Leffler.

    Google Scholar 

  • Aczel, P., & M. Rathjen. (2010). Constructive set theory. Book draft. https://www1.maths.leeds.ac.uk/~rathjen/book.pdf.

  • Arapović, M. (1983). On the embedding of a commutative ring into a \(0\)-dimensional commutative ring. Glasnik Matematički Ser. iii, 18(1), 53–59.

    Google Scholar 

  • Atiyah, M. F., & Macdonald, I. G. (1969). Introduction to commutative algebra. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Banaschewski, B. (1983). The power of the ultrafilter theorem. Journal of the London Mathematical Society, 27(2), 193–202.

    CrossRef  Google Scholar 

  • Banaschewski, B. (1994). A new proof that Krull implies Zorn. Mathematical Logic Quarterly, 40, 478–480.

    CrossRef  Google Scholar 

  • Banaschewski, B., & Vermeulen, J. J. C. (1996). Polynomials and radical ideals. Journal of Pure and Applied Algebra, 113(3), 219–227.

    CrossRef  Google Scholar 

  • Berger, U. (2004). A computational interpretation of open induction. In F. Titsworth (Ed.), Proceedings of the 19th annual IEEE symposium on logic in computer science (pp. 326–334). Washington, D.C.: IEEE Computer Society.

    Google Scholar 

  • Bishop, E. (1967). Foundations of constructive analysis. New York: McGraw-Hill.

    Google Scholar 

  • Bishop, E., & Bridges, D. (1985). Constructive analysis. Berlin: Springer.

    Google Scholar 

  • Blechschmidt, I. (2017). Using the internal language of toposes in algebraic geometry. Doctoral dissertation, University of Augsburg.

    Google Scholar 

  • Boileau, A., & Joyal, A. (1981). La logique des topos. Journal of Symbolic Logic, 46(1), 6–16.

    CrossRef  Google Scholar 

  • Brewer, J., & Richman, F. (2006). Subrings of zero-dimensional rings. In J. W. Brewer, S. Glaz, W. J. Heinzer, & B. M. Olberding (Eds.), Multiplicative ideal theory in commutative algebra: A tribute to the work of Robert Gilmer (pp. 73–88). New York: Springer Science+Business Media.

    Google Scholar 

  • Campbell, P. J. (1978). The origin of Zorn’s Lemma. Historia Mathematica, 5, 77–89.

    CrossRef  Google Scholar 

  • Cederquist, J., & Thierry C. (2000). Entailment relations and distributive lattices. In S.R. Buss, P. Hájek, & P. Pudlák (Eds.), Logic Colloquium ’98: Proceedings of the annual European summer meeting of the Association for Symbolic Logic, Prague, Czech Republic, August 9–15, 1998, volume 13 of Lecture notes in logic (pp. 127–139). Natick, MA: A. K. Peters.

    Google Scholar 

  • Coquand, T. (1997). A note on the open induction principle. Technical report, University of Gothenburg. www.cse.chalmers.se/~coquand/open.ps.

  • Coquand, T. (2009). Space of valuations. Annals of Pure and Applied Logic, 157, 97–109.

    CrossRef  Google Scholar 

  • Coquand, T., Ducos, L., Lombardi, H., & Quitté, C. (2009). Constructive Krull dimension. i: Integral extensions. Journal of Algebra and Its Applications, 8 (1), 129–138.

    Google Scholar 

  • Coquand, T., & Lombardi, H. (2002). Hidden constructions in abstract algebra: Krull dimension of distributive lattices and commutative rings. In M. Fontana, S. -E. Kabbaj, & S. Wiegand (Eds.), Commutative ring theory and applications, volume 231 of Lecture notes in pure and applied mathematics (pp. 477–499). Reading, MA: Addison-Wesley.

    Google Scholar 

  • Coquand, T., & Lombardi, H. (2006). A logical approach to abstract algebra. Mathematical Structures in Computer Science, 16, 885–900.

    CrossRef  Google Scholar 

  • Coquand, T., Lombardi, H., & Neuwirth, S. (2019). Lattice-ordered groups generated by an ordered group and regular systems of ideals. Rocky Mountain Journal of Mathematics, 49(5), 1449–1489.

    CrossRef  Google Scholar 

  • Coquand, T., Lombardi, H., & Roy, M. -F. (2005). An elementary characterisation of Krull dimension. In L. Crosilla & P. Schuster (Eds.), From sets and types to topology and analysis, volume 48 of Oxford logic guides (pp. 239–244). Oxford: Oxford University Press.

    Google Scholar 

  • Coquand, T., & Neuwirth, S. (2017). An introduction to Lorenzen’s Algebraic and logistic investigations on free lattices (1951). Preprint. https://arxiv.org/abs/1711.06139.

  • Coquand, T., & Persson, H. (1998a). Gröbner bases in type theory. In T. Altenkirch, B. Reus, & W. Naraschewski (Eds.), Types for proofs and programs (pp. 33–46). Berlin: Springer.

    Google Scholar 

  • Coquand, T., & Persson, H. (1998b). Integrated development of algebra in type theory. Calculemus and Types Workshop, 98.

    Google Scholar 

  • Coquand, T., Sambin, G., Smith, J., & Valentini, S. (2003). Inductively generated formal topologies. Annals of Pure and Applied Logic, 124, 71–106.

    CrossRef  Google Scholar 

  • Coste, M., Lombardi, H., & Roy, M. -F. (2001). Dynamical method in algebra: Effective Nullstellensätze. Annals of Pure and Applied Logic, 111(3), 203–256.

    Google Scholar 

  • Crosilla, L., & Schuster, P. (2014). Finite methods in mathematical practice. In G. Link (Ed.), Formalism and beyond: On the nature of mathematical discourse, volume 23 of Logos (pp. 351–410). Boston, MA, and Berlin: Walter de Gruyter.

    Google Scholar 

  • Curi, G. (2010). On some peculiar aspects of the constructive theory of point-free spaces. Mathematical Logic Quarterly, 56(4), 375–387.

    CrossRef  Google Scholar 

  • Eisenbud, D. (1995). Commutative algebra with a view toward algebraic geometry, volume 150 of Graduate texts in mathematics. New York: Springer.

    Google Scholar 

  • Español, L. (1982). Constructive Krull dimension of lattices. Revista de la Academia de Ciencias Exactas ... Zaragoza (2) 37, 5–9.

    Google Scholar 

  • Fine, A. (1993). Fictionalism. Midwest Studies in Philosophy, 18, 1–18.

    CrossRef  Google Scholar 

  • Fourman, M., & Grayson, R. (1982). Formal spaces. In The L. E. J. Brouwer Centenary Symposium (Noordwijkerhout, 1981). Studies in logic and the foundations of mathematics (Vol. 110, pp. 107–122). Amsterdam: North-Holland.

    Google Scholar 

  • Goldman, O. (1951). Hilbert rings and the Hilbert Nullstellensatz. Mathematische Zeitschrift, 54(2), 136–140.

    CrossRef  Google Scholar 

  • Hertz, P. (1922). Über Axiomensysteme für beliebige Satzsysteme. i. Teil: Sätze ersten Grades. Mathematische Annalen, 87(3), 246–269.

    Google Scholar 

  • Hertz, P. (1923). Über Axiomensysteme für beliebige Satzsysteme. ii. Teil: Sätze höheren Grades. Mathematische Annalen, 89(1), 76–102.

    Google Scholar 

  • Hertz, P. (1929). Über Axiomensysteme für beliebige Satzsysteme. Mathematische Annalen, 101(1), 457–514.

    CrossRef  Google Scholar 

  • Hodges, W. (1979). Krull implies Zorn. Journal of the London Mathematical Society, 19, 285–287.

    CrossRef  Google Scholar 

  • Howard, P., & Rubin, J. (1998). Consequences of the Axiom of Choice. Providence, RI: American Mathematical Society.

    CrossRef  Google Scholar 

  • Jacobsson, C., & Löfwall, C. (1991). Standard bases for general coefficient rings and a new constructive proof of Hilbert’s basis theorem. Journal of Symbolic Computation, 12(3), 337–372.

    CrossRef  Google Scholar 

  • Johnstone, P.T. (1982). Stone spaces (Cambridge studies in advanced mathematics 3). Cambridge: Cambridge University Press.

    Google Scholar 

  • Johnstone, P.T. (2002). Sketches of an elephant: A topos theory compendium, volume 44 of Oxford logic guides (Vol. 2). Oxford: Clarendon Press.

    Google Scholar 

  • Kemper, G., & Yengui, I. (2019). Valuative dimension and monomial orders. https://arxiv.org/abs/1906.12067

  • Krull, W. (1929). Idealtheorie in Ringen ohne Endlichkeitsbedingung. Mathematische Annalen, 101(1), 729–744.

    CrossRef  Google Scholar 

  • Kunz, E. (1991). Algebra. Braunschweig: Vieweg.

    CrossRef  Google Scholar 

  • Lal, H. (1971). A remark on rings with primary ideals as maximal ideals. Mathematica Scandinavica, 29, 72.

    CrossRef  Google Scholar 

  • Legris, J. (2012). Paul Hertz and the origins of structural reasoning. In J. -Y. Béziau (Ed.), Universal logic: An anthology: From Paul Hertz to Dov Gabbay, Studies in universal logic (pp. 3–10). Basel: Birkhäuser.

    Google Scholar 

  • Lombardi, H. (2002). Dimension de Krull, Nullstellensätze et évaluation dynamique. Mathematische Zeitschrift, 242, 23–46.

    CrossRef  Google Scholar 

  • Lombardi, H., & Quitté, C. (2015). Commutative algebra: Constructive methods: Finite projective modules, volume 20 of Algebra and applications. Dordrecht: Springer Netherlands.

    Google Scholar 

  • Lorenzen, P. (1950). Über halbgeordnete Gruppen. Mathematische Zeitschrift, 52(1), 483–526.

    CrossRef  Google Scholar 

  • Lorenzen, P. (1951). Algebraische und logistische Untersuchungen über freie Verbände. Journal of Symbolic Logic, 16(2), 81–106.

    CrossRef  Google Scholar 

  • Lorenzen, P. (1952). Teilbarkeitstheorie in Bereichen. Mathematische Zeitschrift, 55(3), 269–275.

    CrossRef  Google Scholar 

  • Lorenzen, P. (1953). Die Erweiterung halbgeordneter Gruppen zu Verbandsgruppen. Mathematische Zeitschrift, 58(1), 15–24.

    CrossRef  Google Scholar 

  • Lorenzen, P. (1953). Eine Bemerkung über die Abzählbarkeitsvoraussetzung in der Algebra. Mathematische Zeitschrift, 57, 241–243.

    CrossRef  Google Scholar 

  • Lorenzen, P. (2017). Algebraic and logistic investigations on free lattices (S. Neuwirth of Lorenzen 1951, Trans.). https://arxiv.org/abs/1710.08138

  • Mines, R., Fred R., & Ruitenburg, W. (1988). A course in constructive algebra. Universitext. New York: Springer.

    Google Scholar 

  • Moore, G.H. (1982). Zermelo’s axiom of choice: Its origins, development, & influence. Mineola, NY: Dover Publications 2013. Unabridged republication of the work originally published as volume 8 in the series “Studies in the history of mathematics and physical sciences” by Springer-Verlag, New York.

    Google Scholar 

  • Negri, S. (2014). Proof analysis beyond geometric theories: from rule systems to systems of rules. Journal of Logic and Computation, 26(2), 513–537.

    CrossRef  Google Scholar 

  • Negri, S., & von Plato, J. (1998). Cut elimination in the presence of axioms. Bulletin of Symbolic Logic, 4(4), 418–435.

    CrossRef  Google Scholar 

  • Perdry, H. (2004). Strongly Noetherian rings and constructive ideal theory. Journal of Symbolic Computation, 37(4), 511–535.

    CrossRef  Google Scholar 

  • Perdry, H., & Schuster, P. (2011). Noetherian orders. Mathematical Structures in Computer Science, 21, 111–124.

    CrossRef  Google Scholar 

  • Perdry, H., & Schuster, P. (2014). Constructing Gröbner bases for Noetherian rings. Mathematical Structures in Computer Science, 24, e240206.

    CrossRef  Google Scholar 

  • Raoult, J.-C. (1988). Proving open properties by induction. Information Processing Letters, 29(1), 19–23.

    CrossRef  Google Scholar 

  • Rathjen, M. (2005). Generalized inductive definitions in constructive set theory. In L. Crosilla & P. Schuster (Eds.) From sets and types to topology and analysis: Towards practicable foundations for constructive mathematics, volume 48 of Oxford logic guides (pp. 23–40). Oxford: Clarendon Press.

    Google Scholar 

  • Richman, F. (1974). Constructive aspects of Noetherian rings. Proceedings of the American Mathematical Society, 44, 436–441.

    CrossRef  Google Scholar 

  • Rinaldi, D. (2014). Formal methods in the theories of rings and domains. Doctoral dissertation, University of Munich.

    Google Scholar 

  • Rinaldi, D., & Schuster, P. (2016). A universal Krull–Lindenbaum theorem. Journal of Pure and Applied Algebra, 220, 3207–3232.

    CrossRef  Google Scholar 

  • Rinaldi, D., Schuster, P., & Wessel, D. (2017). Eliminating disjunctions by disjunction elimination. Bulletin of Symbolic Logic, 23(2), 181–200.

    CrossRef  Google Scholar 

  • Rinaldi, D., Schuster, P., & Wessel, D. (2018). Eliminating disjunctions by disjunction elimination. Indagationes Mathematicae (N.S.) 29(1), 226–259.

    Google Scholar 

  • Rinaldi, D., & Wessel, D. (2018). Extension by conservation. Sikorski’s theorem. Logical Methods in Computer Science, 14(4:8), 1–17.

    Google Scholar 

  • Rinaldi, D., & Wessel, D. (2019). Cut elimination for entailment relations. Archive for Mathematical Logic, 58(5–6), 605–625.

    CrossRef  Google Scholar 

  • Sambin, G. (2003). Some points in formal topology. Theoretical Computer Science, 305(1–3), 347–408.

    CrossRef  Google Scholar 

  • Satyanarayana, M. (1967). Rings with primary ideals as maximal ideals. Mathematica Scandinavica, 20, 52–54.

    CrossRef  Google Scholar 

  • Scholz, H. (1919). Die Religionsphilosophie des Als-ob. Annalen der Philosophie, 1(1), 27–113.

    CrossRef  Google Scholar 

  • Schuster, P. (2012). Induction in algebra: A first case study. In Proceedings, LICS 2012 27th annual ACM/IEEE symposium on logic in computer science (pp. 581–585). Dubrovnik, Croatia: IEEE Computer Society Publications.

    Google Scholar 

  • Schuster, P. (2013). Induction in algebra: A first case study. Logical Methods in Computer Science, 9(3), 20.

    CrossRef  Google Scholar 

  • Scott, D. (1954). Prime ideal theorems for rings, lattices, and Boolean algebras. Bulletin of the American Mathematical Society, 60(4), 390.

    Google Scholar 

  • Scott, D. (1971). On engendering an illusion of understanding. Journal of Philosophy, 68, 787–807.

    CrossRef  Google Scholar 

  • Scott, D. (1974). Completeness and axiomatizability in many-valued logic. In L. Henkin, J. Addison, C. C. Chang, W. Craig, D. Scott, & R. Vaught (Eds.), Proceedings of the Tarski Symposium (Proc. Sympos. Pure Math., Vol. xxv, Univ. California, Berkeley, Calif., 1971) (pp. 411–435). Providence, RI: American Mathematical Society.

    Google Scholar 

  • Scott, D. S. (1973). Background to formalization. In Truth, syntax and modality (Proc. Conf. Alternative Semantics, Temple Univ., Philadelphia, Pa., 1970), volume 68 of Studies in logic and the foundations of mathematics, edited by Hugues Leblanc (pp. 244–273). Amsterdam: North-Holland.

    Google Scholar 

  • Seidenberg, A. (1974). What is Noetherian? Rendiconti del Seminario Matematico e Fisico di Milano, 44, 55–61.

    CrossRef  Google Scholar 

  • Simpson, S. G. (2009). Subsystems of second order arithmetic, Perspectives in Logic (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Steinitz, E. (1910). Algebraische Theorie der Körper. Journal für die reine und angewandte Mathematik, 137, 167–309.

    CrossRef  Google Scholar 

  • Vaihinger, H. (1922). Die Philosophie des Als Ob: System der theoretischen, praktischen und religiösen Fiktionen der Menschheit auf Grund eines idealistischen Positivismus. 7. u. 8. Aufl. Leipzig: Verlag von Felix Meiner.

    Google Scholar 

  • Vaihinger, H. (1924). The philosophy of ‘as if’: A system of the theoretical, practical and religious fictions of mankind (C. K. Ogden, Trans.). London: Routledge & Kegan Paul.

    Google Scholar 

  • Wessel, D. (2018). Points, ideals, and geometric sequents. Technical report, University of Verona.

    Google Scholar 

  • Wessel, D. (2020). A note on connected reduced rings. Journal of Commutative Algebra. Forthcoming. https://projecteuclid.org/euclid.jca/1561363253

  • Yengui, I. (2008). Making the use of maximal ideals constructive. Theoretical Computer Science, 392, 174–178.

    CrossRef  Google Scholar 

  • Yengui, I. (2015). Constructive commutative algebra: Projective modules over polynomial rings and dynamical Gröbner bases. Lecture notes in mathematics (Vol. 2138). Cham: Springer.

    Google Scholar 

  • Zermelo, E. (1904). Beweis, daß jede Menge wohlgeordnet werden kann. Mathematische Annalen, 59, 514–516.

    CrossRef  Google Scholar 

  • Zermelo, E. (1908). Neuer Beweis für die Möglichkeit einer Wohlordnung. Mathematische Annalen, 65, 107–128.

    CrossRef  Google Scholar 

  • Zorn, M. (1935). A remark on method in transfinite algebra. Bulletin of the American Mathematical Society, 41, 667–670.

    CrossRef  Google Scholar 

Download references

Acknowledgements

The research that has led to this paper was carried out within the project “ A New Dawn of Intuitionism: Mathematical and Philosophical Advances” (ID 60842) funded by the John Templeton Foundation. Partial support has come from the programme “Dipartimenti di Eccellenza 2018–2022” of the Italian Ministry of Education, Universities and Research (miur), and the project “Categorical localisation: methods and foundations” (catloc) funded by the Università degli Studi di Verona within the programme “Ricerca di Base 2015”. The final version of this paper was prepared within the project “Reducing complexity in algebra, logic, combinatorics—redcom” belonging to the programme “Ricerca Scientifica di Eccellenza 2018” of the Fondazione Cariverona. (The opinions expressed in this paper are those of the authors and do not necessarily reflect the views of those foundations. ) Essential parts of this paper were conceived when both authors visited the Hausdorff Research Institute for Mathematics (him), University of Bonn, on the occasion of the trimester program “Types, Sets, and Constructions”, May–August 2018. The related financial support is gratefully acknowledged. The authors express their gratitude for interesting discussions and valuable hints to Ingo Blechschmidt, who was so kind as to have a look at the manuscript, as well as to Thierry Coquand, Henri Lombardi, Stefan Neuwirth, Davide Rinaldi, Ihsen Yengui, and, last but not least, to the referee for expertly remarks and an appreciative reading of the manuscript.

Author information

Authors and Affiliations

  1. Dipartimento di Informatica, Università di Verona, Verona, Italy

    Peter Schuster & Daniel Wessel

Authors
  1. Peter Schuster
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Daniel Wessel
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Peter Schuster .

Editor information

Editors and Affiliations

  1. Laboratoire de Philosophie et d'Histoire, Universite de Lorraine, NANCY CEDEX, France

    Prof. Dr. Gerhard Heinzmann

  2. Fachbereich Philosophie, Universitat Konstanz, Konstanz, Baden-Württemberg, Germany

    Dr. Gereon Wolters

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and Permissions

Copyright information

© 2021 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schuster, P., Wessel, D. (2021). Syntax for Semantics: Krull’s Maximal Ideal Theorem. In: Heinzmann, G., Wolters, G. (eds) Paul Lorenzen -- Mathematician and Logician. Logic, Epistemology, and the Unity of Science, vol 51. Springer, Cham. https://doi.org/10.1007/978-3-030-65824-3_6

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-030-65824-3_6

  • Published: 18 August 2021

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65823-6

  • Online ISBN: 978-3-030-65824-3

  • eBook Packages: Religion and PhilosophyPhilosophy and Religion (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature