Skip to main content

Advertisement

SpringerLink
Book cover

Paul Lorenzen -- Mathematician and Logician pp 63–76Cite as

  1. Home
  2. Paul Lorenzen -- Mathematician and Logician
  3. Chapter
Lorenzen Between Gentzen and Schütte

Lorenzen Between Gentzen and Schütte

  • Reinhard Kahle22,23 &
  • Isabel Oitavem22,24 
  • Chapter
  • Open Access
  • First Online: 18 August 2021
  • 1071 Accesses

  • 1 Altmetric

Part of the Logic, Epistemology, and the Unity of Science book series (LEUS,volume 51)

Abstract

We discuss Lorenzen’s consistency proof for ramified type theory without reducibility, published in 1951, in its historical context and highlight Lorenzen’s contribution to the development of modern proof theory, notably by the introduction of the \(\omega \)-rule.

“Ihr Vorschlag, die Beweismittel nicht finit’, sondern konstruktiv’

zu nennen, hat wie eine Art Erlösung auf mich gewirkt.

Paul Lorenzen to Paul Bernays, 1947

Download chapter PDF

References

  • Bernays, P. (1964). On platonism in mathematics. Philosophy of mathematics, edited by Paul Benacerraf and Hilary Putnam, pages 274–286. Prentice-Hall. Lecture delivered June 18, 1934, in the cycle of Conferences internationales des sciences mathematiques organized by the University of Geneva, in the series on Mathematical Logic. Translated from the French by C. D. Parsons from L’enseignement mathematique, 1st ser., vol. 34 (1935), pp. 52–69.

    Google Scholar 

  • Carnap, R. (1935). Ein Gültigkeitskriterium für die Sätze der klassischen Mathematik. Monatshefte für Mathematik und Physik, 42, 163–190.

    CrossRef  Google Scholar 

  • Coquand, T. (2020). Lorenzen and constructive mathematics (pp. 45–59).

    Google Scholar 

  • Coquand, T., Lombardi, H., & Neuwirth, S. (2020). Regular entailment relations (pp. 101–122).

    Google Scholar 

  • Coquand, T., & Stefan N. (2017). An introduction to Lorenzen’s Algebraic and logistic investigations on free lattices (1951). arXiv: 1711.06139v1 [math.LO].

  • Coquand, T., & Stefan N. (2020). Lorenzen’s proof of consistency for elementary number theory. History and Philosophy of Science. https://doi.org/10.1080/01445340.2020.1752034.

  • Feferman, S. (1986). Introductory note to [Gödel 1931c]. In S. Feferman et al. (Eds.) Kurt Gödel: Collected works, i: Publications 1929–1936 (pp. 208–213). Oxford: Oxford University Press.

    Google Scholar 

  • Gentzen, G. (1936). Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen, 112, 493–565.

    CrossRef  Google Scholar 

  • Gentzen, G. (1969). Collected works, Edited by M. E. Szabo, North-Holland.

    Google Scholar 

  • Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme i. Monatshefte für Mathematik und Physik, 38, 173–198.

    CrossRef  Google Scholar 

  • Heinzmann, G. (2020). Operation and predicativity: Lorenzen’s approach to arithmetic (pp. 9–20).

    Google Scholar 

  • Hilbert, D. (1926). Über das Unendliche. Mathematische Annalen, 95, 161–190.

    CrossRef  Google Scholar 

  • Hilbert, D. (1928). Probleme der Grundlegung der Mathematik. In Atti del Congresso Internazionale dei Matematici (Bologna, 3–19 settembre 1928). Bologna: Nicola Zanichelli.

    Google Scholar 

  • Hilbert, D. (1931a). Beweis des Tertium non datur. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (pp. 120–125). Talk given on July 17, 1931 in Göttingen.

    Google Scholar 

  • Hilbert, D. (1931b). Die Grundlegung der elementaren Zahlenlehre. Mathematische Annalen104(1), 485–494. Talk given in December 1930 in Hamburg.

    Google Scholar 

  • Hilbert, D. (1967). On the infinite. In van Heijenoort, J. (Ed.) From Frege to Gödel: A source book in mathematical logic, 1879–1931 (pp. 367–392). Harvard University Press. English translation of Hilbert 1926.

    Google Scholar 

  • Hilbert, D., & Paul Bernays. (1939). Grundlagen der Mathematik ii. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 50. 2nd edn. 1970. Berlin: Springer.

    Google Scholar 

  • Kahle, R. (2015). Gentzen’s theorem in context. In K. Reinhard & R. Michael (Eds.) Gentzen’s centenary: The quest for consistency (pp. 3–24). Berlin: Springer.

    Google Scholar 

  • Kahle, R. (2020). Sehr geehrter Herr Professor!’ Proof theory in 1949 in a letter from Schütte to Bernays. In R. Kahle & M. Rathjen (Eds.) The legacy of Kurt Schütte (pp. 3–19). Berlin: Springer.

    Google Scholar 

  • Lorenz, K. (2020). Paul Lorenzens Weg von der Mathematik zur Philosophie: Persönliche Erinnerungen (pp. 1–8).

    Google Scholar 

  • Lorenzen, P. (1948). Grundlagen der Mathematik. In W. Süss (Ed.) Reine Mathematik, Naturforschung und Medizin in Deutschland 1939–1946 (für Deutschland bestimmte Ausgabe der fiat Review of German Science), Band 1, Teil 1 (pp. 11–22). Dietrich’sche Verlagsbuchhandlung.

    Google Scholar 

  • Lorenzen, P. (1951a). Algebraische und logistische Untersuchungen über freie Verbände. Journal Symbolic Logic, 16, 81–106.

    CrossRef  Google Scholar 

  • Lorenzen, P. (1951b). Die Widerspruchsfreiheit der klassischen Analysis. Mathematische Zeitschrift, 54, 1–24.

    CrossRef  Google Scholar 

  • Lorenzen, P. (1962). Metamathematik. Volume 25 of BI Hochschultaschenbücher. Bibliographisches Institut.

    Google Scholar 

  • Lorenzen, P. (1965). Differential und Integral: Eine konstruktive Einführung in die klassische Analysis. Akademische Verlagsgesellschaft.

    Google Scholar 

  • Lorenzen, P. (1968). Constructive mathematics as a philosophical problem. Compositio Mathematica20: 133–142. Also published (with identical pagination) in Logic and foundations of mathematics, edited by D. van Dalen, J. G. Dijkman, S. C. Kleene, & A. S. Troelstra. Alphen aan den Rijn: Wolters-Noordhoff Publishing.

    Google Scholar 

  • Lorenzen, P. (2017). Algebraic and logistic investigations on free lattices. arXiv: 1710.08138. Translation by Stefan Neuwirth of Lorenzen 1951a.

  • Lorenzen, P. (1944/2020). Ein halbordnungstheoretischer Widerspruchsfreiheitsbeweis. History and Philosophy of Logic. From the Oskar Becker Nachlass, Philosophical Archive of the University of Konstanz, file OB 5-3b-5, edited and translated as A proof of freedom from contradiction within the theory of partial order by Stefan Neuwirth. https://doi.org/10.1080/01445340.2020.1752040

  • Macintyre, A. (2005). The mathematical significance of proof theory. Philosophical Transactions of the Royal Society A, 363, 2419–2435.

    CrossRef  Google Scholar 

  • Martin-Löf, P. (2008). The Hilbert–Brouwer controversy resolved? In M. van Atten, P. Boldini, M. Bourdeau, & G. Heinzmann (Eds.) One hundred years of intuitionism (1907–2007): The Cerisy conference (pp. 243–256). Basel: Birkhäuser.

    Google Scholar 

  • Menzler-Trott, E. (2007). Logic’s lost genius: The life of Gerhard Gentzen. Volume 33 of History of mathematics. American Mathematical Society.

    Google Scholar 

  • Neuwirth, S. (2020). Lorenzen’s reshaping of Krull’s Fundamentalsatz for integral domains (1938–1953) (pp. 141–180).

    Google Scholar 

  • Rathjen, M. (2005a). An ordinal analysis of parameter free \(\Pi ^1_2\)- comprehension. Archive for Mathematical Logic, 44(3), 263–362.

    CrossRef  Google Scholar 

  • Rathjen, M. (2005b). An ordinal analysis of stability. Archive for Mathematical Logic, 44(1), 1–62.

    CrossRef  Google Scholar 

  • Rosser, B. (1937). Gödel theorems for non-constructive logics. Journal of Symbolic Logic, 2(3), 129–137.

    CrossRef  Google Scholar 

  • Schuster, P., & Wessel, D. (2020). Syntax for semantics: Krull’s maximal ideal theorem (pp. 75–100).

    Google Scholar 

  • Schütte, K. (1951). Beweistheoretische Erfassung der unendlichen Induktion in der Zahlentheorie. Mathematische Annalen, 122, 369–389.

    CrossRef  Google Scholar 

  • Schütte, K. (1953). Review of Paul Lorenzen, Die Widerspruchsfreiheit der Klassischen Analysis (Lorenzen 1951a). Journal of Symbolic Logic, 18(3), 261–262.

    CrossRef  Google Scholar 

  • Schütte, Kurt. (1960). Beweistheorie. Volume 103 of Grundlehren der Mathematischen Wissenschaften. Berlin: Springer.

    Google Scholar 

  • Schütte, K. (1977). Proof theory. Berlin: Springer.

    Google Scholar 

  • Sundholm, G. (1983). Proof theory: A survey of the omega-rule. Ph.D. dissertation, Magdalen College, University of Oxford.

    Google Scholar 

  • Tarski, A. (1933). Einige Betrachtungen über die Begriffe der \(\omega \)- Widerspruchsfreiheit und der \(\omega \)-Vollständigkeit. Monatshefte für Mathematik und Physik, 40, 97–112.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Theorie und Geschichte der Wissenschaften, Universität Tübingen, Tübingen, Germany

    Reinhard Kahle & Isabel Oitavem

  2. CMA, FCT, Universidade Nova de Lisboa, Costa da Caparica, Portugal

    Reinhard Kahle

  3. CMA and DM, FCT, Universidade Nova de Lisboa, Costa da Caparica, Portugal

    Isabel Oitavem

Authors
  1. Reinhard Kahle
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Isabel Oitavem
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Reinhard Kahle .

Editor information

Editors and Affiliations

  1. Laboratoire de Philosophie et d'Histoire, Universite de Lorraine, NANCY CEDEX, France

    Prof. Dr. Gerhard Heinzmann

  2. Fachbereich Philosophie, Universitat Konstanz, Konstanz, Baden-Württemberg, Germany

    Dr. Gereon Wolters

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and Permissions

Copyright information

© 2021 The Author(s)

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kahle, R., Oitavem, I. (2021). Lorenzen Between Gentzen and Schütte. In: Heinzmann, G., Wolters, G. (eds) Paul Lorenzen -- Mathematician and Logician. Logic, Epistemology, and the Unity of Science, vol 51. Springer, Cham. https://doi.org/10.1007/978-3-030-65824-3_5

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-030-65824-3_5

  • Published: 18 August 2021

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65823-6

  • Online ISBN: 978-3-030-65824-3

  • eBook Packages: Religion and PhilosophyPhilosophy and Religion (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.