Abstract
In the late 1940s and early 1950s, Lorenzen developed his operative logic and mathematics, a form of constructive mathematics. Nowadays this is mostly seen as a precursor of the better-known dialogical logic (Notable exceptions are the works of Schroeder-Heister 2008; Coquand and Neuwirth 2017; Kahle and Oitavem 2020.), and one might assume that the same philosophical motivations were present in both works. However, we want to show that this is not everywhere the case. In particular, we claim that Lorenzen’s well-known rejection of the actual infinite, as stated in Lorenzen (1957), was not a major motivation for operative logic and mathematics. Rather, we argue that a shift happened in Lorenzen’s treatment of the infinite from the early to the late 1950s. His early motivation for the development of operationism is concerned with a critique of the Cantorian notion of set and with related questions about the notions of countability and uncountability; it is only later that his motivation switches to focusing on the concept of infinity and the debate about actual and potential infinity.
Download chapter PDF
References
Bernays, P. (1952). Review: “Über endliche Mengen” by Paul Lorenzen. Journal of Symbolic Logic, 17(4), 275–276.
Coquand, T., & Neuwirth, S. (2017). An introduction to Lorenzen’s “Algebraic and logistic investigations on free lattices’ (1951)”. arXiv:1711.06139 [math.LO].
Coquand, T., & Neuwirth, S. (2020). Lorenzen’s proof of consistency for elementary number theory. History and Philosophy of Logic (to appear). https://doi.org/10.1080/01445340.2020.1752034.
Craig, W. (1957). Review: Einführung in die Operative Logik und Mathematik by Paul Lorenzen. Bulletin of the American Mathematical Society, 63(5), 316–320.
Ferreirós, J. (2007). Labyrinth of thought: A history of set theory and its role in modern mathematics. Basel: Birkhäuser.
Fraenkel, A. A., Bar-Hillel, Y., & Levy, A. (1973). Foundations of set theory (Vol. 67). Studies in logic and in the foundations of mathematics. Amsterdam: Elsevier.
Frey, G. (1957). Review: Paul Lorenzen: Einführung in die operative Logik und Mathematik. Zeitschrift für philosophische Forschung, 11, 631–632.
Heyting, A. (1957). Review: Paul Lorenzen, Das Aktual-Unendliche in der Mathematik; Paul Lorenzen, Die Rolle der Logik in der Grundlagenkrisis der Analysis. Journal of Symbolic Logic, 22(4), 368.
Kahle, R., & Oitavem, I. (2020). Lorenzen between Gentzen and Schütte (In this volume, pp. 61–73).
Linnebo, Ø., & Stewart, S. (2019). Actual and potential infinity. Noûs, 53(1), 160–191.
Lorenz, K. (2001). Basic objectives of dialogue logic in historical perspective. Synthese, 127, 255–263.
Lorenzen, P. (1951a). Die Widerspruchsfreiheit der klassischen Analysis. Mathematische Zeitschrift, 54, 1–24.
Lorenzen, P. (1951b). Konstruktive Begründung der Mathematik. Mathematische Zeitschrift, 53, 162–202.
Lorenzen, P. (1951c). Maß und Integral in der konstruktiven Analysis. Mathematische Zeitschrift, 54, 275–290.
Lorenzen, P. (1952a). Über den Mengenbegriff in der Topologie. Archiv der Mathematik, 3, 377–386.
Lorenzen, P. (1952b). Über die Widerspruchsfreiheit des Unendlichkeitsbegriffes. Studium Generale, 5, 591–594.
Lorenzen, P. (1952c). Über endliche Mengen. Mathematische Annalen, 123, 331–338.
Lorenzen, P. (1954). Die Rolle der Logik in der Grundlagenkrisis der Analysis. In Applications scientifiques de la logique mathematique: Actes de 2\(^{\text{e}}\) Colloque International Logique Mathematique, Paris 25–30 aout 1952, Institut Henri Poincaré (pp. 65–73).
Lorenzen, P. (1955). Einführung in die operative Logik und Mathematik. Berlin: Springer.
Lorenzen, P. (1956a). Die Fiktion der Überabzählbarkeit. In Proceedings of the International Congress of Mathematicians 1954, Amsterdam September 2 – September 9 (Vol. iii, pp. 273–279). North-Holland.
Lorenzen, P. (1956b). Über den, Operativismus. Unpublished document.
Lorenzen, P. (1957). Das Aktual-Unendliche in der Mathematik. Philosophia Naturalis, 4(1), 1–11.
Lorenzen, P. (1960). Constructive and axiomatic mathematics. Synthese, 12(1), 114–119.
Lorenzen, P. (1987). The actual-infinite in mathematics. Translation by K. R. Pavlovic of Lorenzen (1957). In his Constructive philosophy (pp. 195–202). Amherst: University of Massachusetts Press.
Niebergall, K.-G. (2004). Is ZF finitistically reducible? In G. Link (Ed.), One hundred years of Russell’s Paradox: Mathematics, logic, philosophy (pp. 153–180). Berlin, New York: Walter de Gruyter.
Schroeder-Heister, P. (2008). Lorenzen’s operative justification of intuitionistic logic. In M. van Atten, P. Boldini, M. Bourdeau, & G. Heinzmann (Eds.), One hundred years of intuitionism (1907–2007): The Cerisy conference (pp. 214–240). Basel: Birkhäuser.
Sieg, W. (1999). Hilbert’s programs: 1917–1922. Bulletin of Symbolic Logic, 5(1), 1–44.
Skolem, T. (1957). Review: Paul Lorenzen, Einführung in die operative Logik und Mathematik. Journal of Symbolic Logic, 22(3), 289–290.
Stegmüller, W. 1958. Review: Paul Lorenzen, Einführung in die operative Logik und Mathematik. Philosophische Rundschau6(3/4), 161–182.
Weyl, H. (1918). Das Kontinuum. Leipzig: Veit & Co.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Copyright information
© 2021 The Author(s)
About this chapter
Cite this chapter
Antos, C. (2021). Conceptions of Infinity and Set in Lorenzen’s Operationist System. In: Heinzmann, G., Wolters, G. (eds) Paul Lorenzen -- Mathematician and Logician. Logic, Epistemology, and the Unity of Science, vol 51. Springer, Cham. https://doi.org/10.1007/978-3-030-65824-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-65824-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-65823-6
Online ISBN: 978-3-030-65824-3
eBook Packages: Religion and PhilosophyPhilosophy and Religion (R0)