Skip to main content

A Volume-of-Fluid Dual-Scale Approach for Simulating Turbulent Liquid/Gas Interactions

  • Conference paper
  • First Online:
Turbulence and Interactions (TI 2018 2018)

Abstract

Advances to a dual-scale modeling approach (Gorokhovski and Herrmann, 2008) are presented to describe turbulent phase interface dynamics in a Large Eddy Simulation spatial filtering context. Spatial filtering of the governing equations to decrease the burden of Direct Numerical Simulation introduces several sub-filter terms that require modeling. Instead of developing individual closure models for the interface associated terms, the dual-scale approach uses an exact closure by explicitly filtering a fully resolved realization of the phase interface. This resolved realization is maintained on a high-resolution over-set mesh using a Refined Local Surface Grid approach (Herrmann, 2008) employing an un-split, geometric, bounded, and conservative Volume-of-Fluid method (Owkes and Desjardins, 2014). Advection of the phase interface on this DNS scale requires a reconstruction of the fully resolved interface velocity. This velocity is the sum of the filter scale velocities, readily available from an LES solver, and sub-filter velocity fluctuations. These fluctuations can be due to sub-filter turbulent eddies, which can be reconstructed on-the-fly using a local fractal interpolation technique (Scotti and Meneveau, 1999) to generate time evolving sub-filter velocity fluctuations. In this work, results from the dual-scale LES model are compared to DNS results for four different realizations of a unit density and viscosity contrast interface in a homogeneous isotropic turbulent flow at infinite Weber number. Introduction of a sub-filter turbulent velocity reconstruction in a passive scalar context is the first step towards use of a dual-scale model for multiphase applications.

The support of NASA TTT grant NNX16AB07A is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aniszewski, W., Bogusławski, A., Marek, M., Tyliszczak, A.: A new approach to sub-grid surface tension for LES of two-phase flows. J. Comput. Phys. 231(21), 7368–7397 (2012). http://www.sciencedirect.com/science/article/pii/S0021999112003890

    Article  MathSciNet  Google Scholar 

  2. Chiodi, R., Desjardins, O.: DNS of turbulent phase interfaces (2017)

    Google Scholar 

  3. Cummins, S.J., François, M.M., Kothe, D.B.: Estimating curvature from volume fractions. Comput. Struct. 83, 425–434 (2005)

    Article  Google Scholar 

  4. Ding, K.Q., Zhang, Z.X., Shi, Y.P., She, Z.S.: Synthetic turbulence constructed by spatially randomized fractal interpolation. Phys. Rev. E 82(3), 036311 (2010). https://doi.org/10.1103/PhysRevE.82.036311

    Article  Google Scholar 

  5. Gorokhovski, M., Herrmann, M.: Modeling primary atomization. Annu. Rev. Fluid Mech. 40(1), 343–366 (2008). http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.fluid.40.111406.102200

    Article  MathSciNet  Google Scholar 

  6. Gorokhovski, M., Jouanguy, J., Chtab, A.: Simulation of air-blast atomization: “floating guard” statistic particle method for conditioning of LES computation; stochastic models of break-up and coalescence. In: Proceedings of International Conference on Liquid Atomization and Spray Systems (2006)

    Google Scholar 

  7. Gorokhovski, M., Jouanguy, J., Chtab, A.: Stochastic simulation of the liquid jet break-up in a high-speed air coflow. In: International Conference on Multiphase Flow, Leipzig, Germany (2007)

    Google Scholar 

  8. Herrmann, M.: A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids. J. Comput. Phys. 227(4), 2674–2706 (2008). http://www.sciencedirect.com/science/article/B6WHY-4R53WMC-7/2/bd0eb9d6157d8845efeb734b0aa6a6cf

    Article  MathSciNet  Google Scholar 

  9. Herrmann, M.: A sub-grid surface dynamics model for sub-filter surface tension induced interface dynamics. Comput. Fluids 87(0), 92–101 (2013). https://doi.org/10.1016/j.compfluid.2013.02.008. http://www.sciencedirect.com/science/article/pii/S0045793013000637

  10. Herrmann, M., Gorokhovski, M.: An outline of a LES subgrid model for liquid/gas phase interface dynamics. In: Proceedings of the 2008 CTR Summer Program, pp. 171–181. Center for Turbulence Research, Stanford University, Stanford (2008)

    Google Scholar 

  11. Herrmann, M., Gorokhovski, M.: A large eddy simulation subgrid model for turbulent phase interface dynamics. In: ICLASS 2009, 11th Triennial International Annual Conference on Liquid Atomization and Spray Systems, Vail, CO (2009)

    Google Scholar 

  12. Labourasse, E., Lacanette, D., Toutant, A., Lubin, P., Vincent, S., Lebaigue, O., Caltagirone, J.P., Sagaut, P.: Towards large eddy simulation of isothermal two-phase flows: governing equations and a priori tests. Int. J. Multiphase Flow 33(1), 1–39 (2007). http://www.sciencedirect.com/science/article/pii/S0301932206000905

    Article  Google Scholar 

  13. Owkes, M., Desjardins, O.: A computational framework for conservative, three-dimensional, unsplit, geometric transport with application to the volume-of-fluid (VOF) method. J. Comput. Phys. 270, 587–612 (Aug 2014). https://doi.org/10.1016/j.jcp.2014.04.022, http://linkinghub.elsevier.com/retrieve/pii/S002199911400285X

  14. Pilliod, J.E.: An analysis of piecewise linear interface reconstruction algorithms for volume-of-fluid methods. Master’s thesis, University of California Davis (1992)

    Google Scholar 

  15. Pilliod Jr., J.E., Puckett, E.G.: Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J. Comput. Phys. 199(2), 465–502 (2004). https://doi.org/10.1016/j.jcp.2003.12.023. http://www.sciencedirect.com/science/article/pii/S0021999104000920

    Article  MathSciNet  MATH  Google Scholar 

  16. Scardovelli, R., Zaleski, S.: Analytical relations connecting linear interfaces and volume fractions in rectangular grids. J. Comput. Phys. 164(1), 228–237 (2000). https://doi.org/10.1006/jcph.2000.6567. http://www.sciencedirect.com/science/article/pii/S0021999100965677

    Article  MathSciNet  MATH  Google Scholar 

  17. Scotti, A., Meneveau, C.: A fractal model for large eddy simulation of turbulent flow. Phys. D: Nonlinear Phenomena 127(3–4), 198–232 (1999). https://doi.org/10.1016/S0167-2789(98)00266-8. http://linkinghub.elsevier.com/retrieve/pii/S0167278998002668

    Article  MathSciNet  MATH  Google Scholar 

  18. Toutant, A., Chandesris, M., Jamet, D., Lebaigue, O.: Jump conditions for filtered quantities at an under-resolved discontinuous interface. Part 1: theoretical development. Int. J. Multiphase Flow 35(12), 1100–1118 (2009). http://www.sciencedirect.com/science/article/pii/S030193220900130X

    Article  Google Scholar 

  19. Toutant, A., Chandesris, M., Jamet, D., Lebaigue, O.: Jump conditions for filtered quantities at an under-resolved discontinuous interface. Part 2: a priori tests. Int. J. Multiphase Flow 35(12), 1119–1129 (2009). http://www.sciencedirect.com/science/article/pii/S0301932209001293

    Article  Google Scholar 

  20. Toutant, A., Labourasse, E., Lebaigue, O., Simonin, O.: DNS of the interaction between a deformable buoyant bubble and a spatially decaying turbulence: a priori tests for LES two-phase flow modelling. Comput. Fluids 37(7), 877–886 (2008). http://www.sciencedirect.com/science/article/pii/S004579300700165X

    Article  MathSciNet  Google Scholar 

  21. Vallet, A., Borghi, R.: An Eulerian model of atomization of a liquid jet. In: Proceedings of International Conference on Multiphase Flow, Lyon, France (1998)

    Google Scholar 

  22. Vallet, A., Burluka, A., Borghi, R.: Development of an eulerian model for the atomization of a liquid jet. Atom. Sprays 11, 619–642 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Kedelty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kedelty, D., Uglietta, J., Herrmann, M. (2021). A Volume-of-Fluid Dual-Scale Approach for Simulating Turbulent Liquid/Gas Interactions. In: Deville, M., et al. Turbulence and Interactions. TI 2018 2018. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 149. Springer, Cham. https://doi.org/10.1007/978-3-030-65820-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65820-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65819-9

  • Online ISBN: 978-3-030-65820-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics