Skip to main content

Towards Data-Driven Digital Twins for Smart Manufacturing

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 182)

Abstract

The adoption of a digital twin for a smart factory offers several advantages, such as improved production and reduced costs, and energy consumption. Due to the growing demands of the market, factories have adopted the reconfigurable manufacturing paradigm, wherein the structure of the factory is constantly changing. This situation presents a unique challenge to traditional modeling and simulation approaches. To deal with this scenario, we propose a generic data-driven framework for automated construction of digital twins for smart factories. The novel aspects of our proposed framework include a pure data-driven approach incorporating machine learning and process mining techniques, and continuous model improvement and validation.

Keywords

  • Data-driven
  • Digital twin
  • Simulation
  • Smart factory
  • Reconfigurable manufacturing
  • Machine learning
  • Process mining

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Grieves, M.: Digital twin: manufacturing excellence through virtual factory replication. White Pap. 1, 1–7 (2014)

    Google Scholar 

  2. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine 51(11), 1016–1022 (2018)

    CrossRef  Google Scholar 

  3. Tao, F., Zhang, H., Liu, A., Nee, A.Y.: Digital twin in industry: state-of-the-art. IEEE Trans. Industr. Inf. 15(4), 2405–2415 (2018)

    CrossRef  Google Scholar 

  4. Söderberg, R., Wärmefjord, K., Carlson, J.S., Lindkvist, L.: Toward a digital twin for real-time geometry assurance in individualized production. CIRP Ann. 66(1), 137–140 (2017)

    CrossRef  Google Scholar 

  5. Law, A.M., Kelton, W.D., Kelton, W.D.: Simulation Modeling and Analysis, vol. 3. McGraw-Hill, New York (2000)

    MATH  Google Scholar 

  6. Tao, F., Zhang, M.: Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing. IEEE Access 5, 20418–20427 (2017)

    CrossRef  Google Scholar 

  7. Koren, Y., Gu, X., Guo, W.: Reconfigurable manufacturing systems: principles, design, and future trends. Front. Mech. Eng. 13(2), 121–136 (2018)

    CrossRef  Google Scholar 

  8. Radziwon, A., Bilberg, A., Bogers, M., Madsen, E.S.: The smart factory: exploring adaptive and flexible manufacturing solutions. Procedia Eng. 69, 1184–1190 (2014)

    CrossRef  Google Scholar 

  9. Gola, A., Świć, A.: Simulation based analysis of reconfigurable manufacturing system configurations. In: Applied Mechanics and Materials, vol. 844, pp. 50–59. Trans Tech Publ (2016)

    Google Scholar 

  10. Zhang, C., Xu, W., Liu, J., Liu, Z., Zhou, Z., Pham, D.T.: A reconfigurable modeling approach for digital twin-based manufacturing system. Procedia CIRP 83, 118–125 (2019)

    CrossRef  Google Scholar 

  11. Wang, X.V., Wang, L.: Digital twin-based WEEE recycling recovery, and remanufacturing in the background of industry 4.0. Int. J. Prod. Res. 57(12), 3892–3902 (2019)

    CrossRef  Google Scholar 

  12. Yang, S., MR, A.R., Kaminski, J., Pepin, H.: Opportunities for industry 4.0 to support remanufacturing. Appl. Sci. 8(7), 1177 (2018)

    CrossRef  Google Scholar 

  13. Kim, B.S., Kang, B.G., Choi, S.H., Kim, T.G.: Data modeling versus simulation modeling in the big data era: case study of a greenhouse control system. Simulation 93(7), 579–594 (2017)

    CrossRef  Google Scholar 

  14. Qi, Y., Mao, Z., Zhang, M., Guo, H.: Manufacturing practices and servitization: the role of mass customization and product innovation capabilities. Int. J. Prod. Econ. 107747 (2020)

    Google Scholar 

  15. Lattner, A.D., Bogon, T., Lorion, Y., Timm, I.J.: A knowledge-based approach to automated simulation model adaptation. In: Proceedings of the 2010 Spring Simulation Multiconference, pp. 1–8 (2010)

    Google Scholar 

  16. Charpentier, P., Véjar, A.: From spatio-temporal data to manufacturing system model. J. Control Autom. Electr. Syst. 25(5), 557–565 (2014)

    CrossRef  Google Scholar 

  17. Rodič, B., Kanduč, T.: Optimisation of a complex manufacturing process using discrete event simulation and a novel heuristic algorithm. Int. J. Math. Models Methods Appl. Sci. 9, 320–329 (2015)

    Google Scholar 

  18. Uhlemann, T.H.J., Lehmann, C., Steinhilper, R.: The digital twin: realizing the cyber-physical production system for industry 4.0. Procedia CIRP 61, 335–340 (2017)

    CrossRef  Google Scholar 

  19. Goodall, P., Sharpe, R., West, A.: A data-driven simulation to support remanufacturing operations. Comput. Ind. 105, 48–60 (2019)

    CrossRef  Google Scholar 

  20. Rasheed, A., San, O., Kvamsdal, T.: Digital twin: values, challenges and enablers from a modeling perspective. IEEE Access 8, 21980–22012 (2020)

    CrossRef  Google Scholar 

  21. Lazarova-Molnar, S., Mohamed, N.: Reliability assessment in the context of industry 4.0: data as a game changer. Procedia Comput. Sci. 151, 691–698 (2019)

    CrossRef  Google Scholar 

  22. Ali Farsi, M., Zio, E.: Industry 4.0: Some challenges and opportunities for reliability engineering

    Google Scholar 

  23. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 1–58 (2009)

    CrossRef  Google Scholar 

  24. Francis, D.P., Raimond, K.: A random fourier features based streaming algorithm for anomaly detection in large datasets. In: Rajsingh, E., Veerasamy, J., Alavi, A., Peter, J. (eds.) Advances in Big Data and Cloud Computing, vol. 645, pp. 209–217. Springer, Singapore (2018)

    CrossRef  Google Scholar 

  25. Van Der Aalst, W.: Process mining. Commun. ACM 55(8), 76–83 (2012)

    CrossRef  Google Scholar 

  26. Haystack: Haystack, project haystack. https://project-haystack.org/ (2020). Accessed 1 August 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deena P. Francis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Francis, D.P., Lazarova-Molnar, S., Mohamed, N. (2021). Towards Data-Driven Digital Twins for Smart Manufacturing. In: Selvaraj, H., Chmaj, G., Zydek, D. (eds) Proceedings of the 27th International Conference on Systems Engineering, ICSEng 2020. ICSEng 2020. Lecture Notes in Networks and Systems, vol 182. Springer, Cham. https://doi.org/10.1007/978-3-030-65796-3_43

Download citation