Skip to main content

Response to Engineered Nanomaterials in Arabidopsis thaliana, a Model Plant

  • Chapter
  • First Online:
Nanomaterial Biointeractions at the Cellular, Organismal and System Levels

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 362 Accesses

Abstract

Engineered nanomaterials of various chemical, physical and morphological characteristics are released into the environment because of their diverse applications. Plants being ubiquitous are the first sink for such released materials as they can easily uptake, transport, accumulate and transform materials in the nano/micrometre range. As a model plant, Arabidopsis thaliana has several advantages over other plants, which can be used to delineate the cellular or molecular interactions. Investigations based on Arabidopsis exposure indicate that the nanoparticles tend to induce changes in growth pattern with obvious growth promotion at lower concentrations while significant inhibition at higher concentrations. Even though growth promotion has been recorded in case of treatments with metallic nanoparticles including gold, silver, titanium for many plant species the actual mechanism of action is unclear. Prominent physiological features supporting growth include significant increases in water content, chlorophyll, and total protein contents at lower concentrations, which revert upon treatment with higher concentrations. The size, shape and surface characteristic and concentration of different nanoparticles were found influencing the interaction and outcome within a metal type. Changes in certain physiological, biochemical parameters and gene expression patterns in Arabidopsis signify the operation of stress perception and response pathways in case of inhibitory effects. While the adverse effects vary in the extent of genotoxicity and alteration in the gene expression patterns related to cell division, photosynthesis and other physiological phenotypes, the oxidative stress pathways are common over types of the metal or non-metal nanoparticles examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adisa, I. O., Pullagurala, V. L. R., Peralta-Videa, J. R., Dimkpa, C. O., Elmer, W. H., Gardea-Torresdey, J. L., & White, J. C. (2019). Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environmental Science: Nano, 6, 2002–2030. https://doi.org/10.1039/C9EN00265K.

    Article  CAS  Google Scholar 

  • Avellan, A., Schwab, F., Masion, A., Chaurand, P., Borschneck, D., Vidal, V., Rose, J., Santaella, C., & Levard, C. (2017). Nanoparticle uptake in plants: Gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environmental Science and Technology, 51, 8682–−8691.

    CAS  PubMed  Google Scholar 

  • Baghkheirati, E. K., & Lee, J. G. (2015). Gene expression, protein function and pathways of Arabidopsis thaliana responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat. Nanomaterials, 5, 436–467. https://doi.org/10.3390/nano5020436.

    Article  CAS  Google Scholar 

  • Bao, D., Oh, Z. G., & Chen, Z. (2016). Characterization of silver nanoparticles internalized by Arabidopsis plants using single particle ICP-MS analysis. Frontiers in Plant Science, 7, 32. https://doi.org/10.3389/fpls.2016.00032.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bombin, S., LeFebvre, M., Sherwood, J., Xu, Y., Bao, Y., & Ramonell, K. M. (2015). Developmental and reproductive effects of iron oxide nanoparticles in Arabidopsis thaliana. International Journal of Molecular Sciences, 16, 24174–24193.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhry, N., Dwivedi, S., Chaudhry, V., Singh, A., Saquib, Q., Azam, A., & Musarrat, J. (2018). Bio-inspired nanomaterials in agriculture and food: Current status, foreseen applications and challenges. Microbial Pathogenesis, 123, 196–200. https://doi.org/10.1016/j.micpath.2018.07.013.

    Article  CAS  PubMed  Google Scholar 

  • García-Sánchez, S., Bernales, I., & Cristobal, S. (2015). Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics, 16, 341. https://doi.org/10.1186/s12864-015-1530-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geisler-Lee, J., Brooks, M., Gerfen, J. R., Wang, Q., Fotis, C., Sparer, A., Ma, X., Berg, R. H., & Geisler, M. (2014). Reproductive toxicity and life history dtudy of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials, 4, 301–318. https://doi.org/10.3390/nano4020301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman, M., Bhuyan, M. H. M. B., Anee, T. I., Parvin, K., Nahar, K., Mahmud, J. A. I., & Fujita, M. (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8, 384. https://doi.org/10.3390/antiox8090384.

    Article  CAS  PubMed Central  Google Scholar 

  • Hayles, J., Johnson, L., Worthley, C., & Losic, D. (2017). Nanopesticides: A review of current research and perspectives In new pesticides and soil sensors (pp. 193–225). Academic Press. https://doi.org/10.1016/B978-0-12-804299-1.00006-0.

  • Hendel, A. M., Zubko, M., Stróz, D., & Kurczynska, E. U. (2019). Effect of nanoparticles surface charge on the Arabidopsis thaliana (L.) roots development and their movement into the root cells and protoplasts. International Journal of Molecular Science, 20, 1650. https://doi.org/10.3390/ijms20071650.

    Article  CAS  Google Scholar 

  • Jain, A., Sinilal, B., Starnes, D. L., Sanagala, R., Krishnamurthy, S., & Sahi, S. V. (2014). Role of Fe-responsive genes in bioreduction and transport of ionic gold to roots of Arabidopsis thaliana during synthesis of gold nanoparticles. Plant Physiology and Biochemistry, 84, 189–196.

    CAS  PubMed  Google Scholar 

  • Kaveh, R., Li, Y. S., Ranjbar, S., Tehrani, R., Brueck, C. L., & Aken, B. V. (2013). Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environmental Science & Technology, 47, 10637–10644.

    CAS  Google Scholar 

  • Ke, M., Qu, Q., Peijnenburg, W. J. G. M., Li, X., Zhang, M., Zhang, Z., Lu, T., Pan, X., & Qian, H. (2018). Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways. Science of the Total Environment, 644, 1070–1079.

    CAS  Google Scholar 

  • Ke, M., Zhu, Y., Zhang, M., Gumai, H., Zhang, Z., Xu, J., & Qian, H. (2017). Physiological and molecular response of Arabidopsis thaliana to CuO nanoparticle (nCuO) exposure. Bulletin of Environmental Contamination and Toxicology, 99, 713–718.

    CAS  PubMed  Google Scholar 

  • Kim, J. H., Lee, Y., Kim, E. J., Gu, S., Sohn, E. J., Seo, Y. S., An, H. J., & Chang, Y. S. (2014). Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environmental Science and Technology, 48, 3477–3485.

    CAS  PubMed  Google Scholar 

  • Kim, J. H., Oh, Y., Yoon, H., Hwang, I., & Chang, Y. S. (2015). Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environmental Science and Technology, 49, 1113–1119.

    CAS  PubMed  Google Scholar 

  • Kolackova, M., Moulick, A., Kopel, P., Dvorak, M., Adam, V., Klejdus, B., & Huska, D. (2019). Antioxidant, gene expression and metabolomics fingerprint analysis of Arabidopsis thaliana treated by foliar spraying of ZnSe quantum dots and their growth inhibition of agrobacterium tumefaciens. Journal of Hazardous Materials, 365, 932–941.

    CAS  PubMed  Google Scholar 

  • Koo, Y., Ekaterina, Y., Lukianova-Hleb, E. Y., Pan, J., Thompson, S. M., Lapotko, D. M., & Braam, J. (2015b). In planta response of Arabidopsis to photothermal impact mediated by gold nanoparticles. Small, 12, 623–630.

    PubMed  Google Scholar 

  • Koo, Y., Wang, J., Zhang, Q., Zhu, H., Chehab, E. W., Colvin, V. L., Alvarez, P. J. J., & Braam, J. (2015a). Fluorescence reports intact quantum dot uptake into roots and translocation to leaves of Arabidopsis thaliana and subsequent ingestion by insect herbivores. Environmental Science and Technology, 49, 626–632.

    CAS  PubMed  Google Scholar 

  • Kumar, V., Guleria, P., Kumar, V., & Yadav, S. K. (2013). Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Science of the Total Environment, 461–462, 462–468.

    Google Scholar 

  • Kurepa, J., Paunesku, T., Vogt, S., Arora, H., Rabatic, B. M., Lu, J., Wanzer, M. B., Woloschak, G. E., & Smalle, J. A. (2010). Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Letters, 10, 2296–2302.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Landa, P., Dytrych, P., Prerostova, S., Petrova, S., Vankova, R., & Vanek, T. (2017). Transcriptomic response of Arabidopsis thaliana exposed to CuO nanoparticles, bulk material, and ionic copper. Environmental Science and Technology, 51, 10814–10824.

    CAS  PubMed  Google Scholar 

  • Landa, P., Prerostova, S., Petrova, S., Knirsch, V., Vankova, R., & Vanek, T. (2015). The transcriptomic response of Arabidopsis thaliana to zinc oxide: A comparison of the impact of nanoparticle, bulk, and ionic zinc. Environmental Science and Technology, 49, 14537–14545.

    CAS  PubMed  Google Scholar 

  • Landa, P., Vankova, R., Andrlova, J., Hodek, J., Marsik, P., Storchova, H., White, J. C., & Vanek, T. (2012). Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. Journal of Hazardous Materials, 241-242, 55–62.

    CAS  PubMed  Google Scholar 

  • Lee, C. W., Mahendra, S., Katherine, Z., Li, D., Tsai, Y. C., Braam, J., & Pedro, J. J. A. (2010). Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry, 29, 669–675.

    CAS  PubMed  Google Scholar 

  • Li, X., Ke, M., Zhang, M., Peijnenburg, W. J. G. M., Fan, X., Xu, J., Zhang, Z., Lu, T., Fu, Z., & Qian, H. (2018). The interactive effects of diclofop-methyl and silver nanoparticles on Arabidopsis thaliana: Growth, photosynthesis and antioxidant system. Environmental Pollution, 232, 212–219.

    CAS  PubMed  Google Scholar 

  • Lin, C., Fugetsu, B., Su, Y., & Watari, F. (2009). Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. Journal of Hazardous Materials, 170, 578–583.

    CAS  PubMed  Google Scholar 

  • Liu, H., Ma, C., Chen, G., White, J. C., Wang, Z., Xing, B., & Dhankher, O. P. (2017). Titanium dioxide nanoparticles alleviate tetracycline toxicity to Arabidopsis thaliana (L.). ACS Sustainable Chemistry and Engineering, 5, 3204–3213.

    CAS  Google Scholar 

  • Liu, J. W., Deng, D. Y., Yu, Y., Liu, F. F., Lin, B. X., Cao, Y. J., Hu, X. G., & Wu, J. Z. (2015). In situ detection of salicylic acid binding sites in plant tissues. Luminescence, 30, 18–25.

    PubMed  Google Scholar 

  • Marmiroli, M., Mussi, F., Pagano, L., Imperiale, D., Lencioni, G., Villani, M., Zappettini, A., White, J. C., & Marmiroli, N. (2020). Cadmium sulfide quantum dots impact on Arabidopsis Thaliana physiology and morphology. Chemosphere, 240, 124856.

    CAS  PubMed  Google Scholar 

  • Marmiroli, M., Pagano, L., Savo, S. M. L., Villani, M., & Marmiroli, N. (2014). Genome-wide approach in Arabidopsis thaliana to assess the toxicity of cadmium sulfide quantum dots. Environmental Science and Technology, 48, 5902–5909.

    CAS  PubMed  Google Scholar 

  • Marusenko, Y., Jessie Shipp, J., Hamilton, G. A., Morgan, J. L. L., Keebaugh, M., Hill, H., Dutta, A., Zhuo, X., Upadhyay, N., Hutchings, J., Herckes, P., Anbar, A. D., Shock, E., & Hartnett, H. E. (2013). Bioavailability of nanoparticulate hematite to Arabidopsis thaliana. Environmental Pollution, 174, 150–156.

    CAS  PubMed  Google Scholar 

  • Montes, A., Bisson, M. A., Gardella, J. A., & Aga, D. S. (2017). Uptake and transformations of engineered nanomaterials: Critical responses observed in terrestrial plants and the model plant Arabidopsis thaliana. Science of the Total Environment, 607-608, 1497–1596. https://doi.org/10.1016/j.scitotenv.2017.06.190.

    Article  CAS  Google Scholar 

  • Nair, P. M. G., & Chung, I. M. (2014a). Cell cycle and mismatch repair genes as potential biomarkers in Arabidopsis thaliana seedlings exposed to silver nanoparticles. Bulletin of Environmental Contamination and Toxicology, 92, 719–725. https://doi.org/10.1007/s00128-014-1254-1.

    Article  CAS  Google Scholar 

  • Nair, P. M. G., & Chung, I. M. (2014b). Assessment of silver nanoparticle-induced physiological and molecular changes in Arabidopsis thaliana. Environmental Science and Pollution Research, 21, 8858–8869. https://doi.org/10.1007/s11356-014-2822-y.

    Article  CAS  PubMed  Google Scholar 

  • Nair, P. M. G., & Chung, I. M. (2014c). Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes. Environmental Science and Pollution Research, 21, 12709–12722.

    CAS  PubMed  Google Scholar 

  • Nair, P. M. G., & Chung, I. M. (2017). Regulation of morphological, molecular and nutrient status in Arabidopsis thaliana seedlings in response to ZnO nanoparticles and Zn ion exposure. Science of the Total Environment, 575, 187–198.

    CAS  Google Scholar 

  • Nath, J., Dror, I., Landa, P., Vanek, T., Ashiri, I. K., & Berkowitz, B. (2018). Synthesis and characterization of isotopically-labeled silver, copper and zinc oxide nanoparticles for tracing studies in plants. Environmental Pollution, 242, 1827–1837.

    CAS  PubMed  Google Scholar 

  • Ojha, S., Singh, D., Sett, A., Chetia, H., Kabiraj, D., & Bora, U. (2018). Nanotechnology in crop protection In Nanomaterials in plants, algae, and microorganisms: Concepts and controversies., 1, 345–391. https://doi.org/10.1016/B978-0-12-811487-2.00016-5.

  • Riley, M. K., & Vermerris, W. (2017). Recent advances in nanomaterials for gene delivery—A review. Nanomaterials, 7, 94. https://doi.org/10.3390/nano7050094.

    Article  CAS  PubMed Central  Google Scholar 

  • Rogers, H., & Munné-Bosch, S. (2016). Production and scavenging of reactive oxygen species and redox signaling during leaf and flower senescence: Similar but different. Plant Physiology, 171, 1560–1568.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shankar, S. S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A., & Sastry, M. (2004). Biological synthesis of triangular gold nano prisms. Nature Materials, 3, 482–488.

    CAS  PubMed  Google Scholar 

  • Shen, C. X., Zhang, Q. F., Li, J., Bi, F. C., & Yao, N. (2010). Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. American Journal of Botany, 97, 1602–1609.

    CAS  PubMed  Google Scholar 

  • Siegel, J., Záruba, K., Švorčík, V., Kroumanová, K., Burketová, L., & Martinec, J. (2018). Round-shape gold nanoparticles: Effect of particle size and concentration on Arabidopsis thaliana root growth. Nanoscale Research Letters, 13(95). https://doi.org/10.1186/s11671-018-2510-9.

  • Soria, N. G. C., Bisson, M. A., Gokcumen, G. E. A., & Aga, D. S. (2019). High-resolution mass spectrometry-based metabolomics reveal the disruption of jasmonic pathway in Arabidopsis thaliana upon copper oxide nanoparticle exposure. Science of the Total Environment, 693, 133443.

    Google Scholar 

  • Sosan, A., Svistunenko, D., Straltsova, D., Tsiurkina, K., Smolich, I., Lawson, T., Subramaniam, S., Golovko, V., Anderson, D., Sokolik, A., Colbeck, I., & Demidchik, V. (2016). Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. The Plant Journal, 85, 245–257. https://doi.org/10.1111/tpj.13105.

    Article  CAS  PubMed  Google Scholar 

  • Sun, J., Wang, L., Li, S., Yin, L., Huang, J., & Chen, C. (2017). Toxicity of silver nanoparticles to Arabidopsis: Inhibition of root gravitropism by interfering with auxin pathway. Environmental Toxicology and Chemistry, 36, 2773–2780.

    CAS  PubMed  Google Scholar 

  • Syu, Y., Hung, J. H., Chen, J. C., & Chuang, H. (2014). Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology and Biochemistry, 83, 57–64.

    CAS  PubMed  Google Scholar 

  • Szymańska, R., Kołodziej, K., Ślesak, I., Zimak-Piekarczyk, P., Orzechowska, A., Gabruk, M., Zadło, A., Habina, I., Knap, W., Burda, K., & Kruk, J. (2016). Titanium dioxide nanoparticles (100-1000 mg/l) can affect vitamin E response in Arabidopsis thaliana. Environmental Pollution, 213, 957–965.

    PubMed  Google Scholar 

  • Tang, Y., He, R., Zhao, J., Nie, G., Xu, L., & Xing, B. (2016). Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environmental Pollution, 212, 605–614.

    CAS  PubMed  Google Scholar 

  • Taylor, A. F., Rylott, E. L., Anderson, C. W. N., & Bruce, N. C. (2014). Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One, 9(4), e93793. https://doi.org/10.1371/journal.pone.0093793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari, M., Krishnamurthy, S., Shukla, D., Kiiskila, J., Jain, A., Datta, R., Sharma, N., & Sahi, S. V. (2016). Comparative transcriptome and proteome analysis to reveal the biosynthesis of gold nanoparticles in Arabidopsis. Scientific Reports, 6, 21733. https://doi.org/10.1038/srep21733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tumburu, L., Andersen, C. P., Rygiewicz, P. T., & Reichman, J. R. (2015). Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants. Environmental Toxicology and Chemistry, 34, 70–83.

    CAS  PubMed  Google Scholar 

  • Tumburu, L., Andersen, C. P., Rygiewicz, P. T., & Reichman, J. R. (2017). Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis. Environmental Toxicology and Chemistry, 36, 71–82. https://doi.org/10.1002/etc.3500.

    Article  CAS  PubMed  Google Scholar 

  • Vankova, R., Landa, P., Podlipna, R., Dobrev, P. I., Prerostova, S., Langhansova, L., Gaudinova, A., Motkova, K., Knirsch, V., & Vanek, T. (2017). ZnO nanoparticle effects on hormonal pools in Arabidopsis thaliana. Science of the Total Environment, 593-594, 535–542.

    CAS  Google Scholar 

  • Wang, J., Koo, Y., Alexander, A., Yang, Y., Westerhof, S., & Zhang, Q. (2013). Phytostimulation of Poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environmental Science and Technology, 47, 5442–5449. https://doi.org/10.1021/es4004334.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Kurepa, J., & Smalle, J. A. (2011). Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell and Environment, 34, 811–820.

    CAS  Google Scholar 

  • Wang, T., Wu, J., Xu, S., Deng, C., Wu, L., Wu, Y., & Bian, P. (2019). A potential involvement of plant systemic response in initiating genotoxicity of ag-nanoparticles in Arabidopsis thaliana. Ecotoxicology and Environmental Safety, 170, 324–330.

    CAS  PubMed  Google Scholar 

  • Wang, X., Yang, X., Chen, S., Li, Q., Wang, W., Hou, C., Gao, X., Wang, L., & Wang, S. (2016a). Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Frontiers in Plant Science, 6, 1–9.

    Google Scholar 

  • Wang, Z., Xu, L., Zhao, J., Wang, X., White, J. C., & Xing, B. (2016b). CuO nanoparticle interaction with Arabidopsis thaliana: Toxicity, parent-progeny transfer, and gene expression. Environmental Science and Technology, 50, 6008–−6016.

    CAS  PubMed  Google Scholar 

  • Wen, Y., Zhang, L., Chen, Z., Sheng, X., Qiu, J., & Xu, D. (2016). Co-exposure of silver nanoparticles and chiral herbicide imazethapyr to Arabidopsis thaliana: Enantioselective effects. Chemosphere, 145, 207–214.

    CAS  PubMed  Google Scholar 

  • Wu, H., Shabala, L., Shabala, S., & Giraldo, J. P. (2018). Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environmental Science: Nano, 5, 1567–1583.

    CAS  Google Scholar 

  • Wu, H., Tito, N., & Giraldo, J. P. (2017). Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano, 11, 11283–11297.

    CAS  PubMed  Google Scholar 

  • Yang, A., Wu, J., Deng, C., Wang, T., & Bian, P. (2018). Genotoxicity of zinc oxide nanoparticles in plants demonstrated using transgenic Arabidopsis thaliana. Bulletin of Environmental Contamination and Toxicology, 101, 514–520.

    CAS  PubMed  Google Scholar 

  • Yang, X., Pan, H., Wang, P., & Zhao, F. J. (2017). Particle-specific toxicity and bioavailability of cerium oxide (CeO2) nanoparticles to Arabidopsis thaliana. Journal of Hazardous Materials, 322, 292–300.

    CAS  PubMed  Google Scholar 

  • Yuan, H., Hu, S., Huang, P., Song, H., Wang, K., Ruan, J., He, R., & Cui, D. (2012). Single walled carbon nanotubes exhibit dual-phase regulation to exposed Arabidopsis mesophyll cells. Nanoscale Research Letters, 7, 1–9.

    Google Scholar 

  • Yuan, J., He, A., Huang, S., Hua, J., & Sheng, G. D. (2016). Internalization and phytotoxic effects of CuO nanoparticles in Arabidopsis thaliana as revealed by fatty acid profiles. Environmental Science and Technology, 50, 10437–−10447.

    CAS  PubMed  Google Scholar 

  • Ze, Y., Liu, C., Wang, L., Hong, M., & Hong, F. (2011). The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biological Trace Element Research, 143, 1131–1141.

    CAS  PubMed  Google Scholar 

  • Zhang, C. L., Jiang, H. S., Gu, S. P., Zhou, X. H., Lu, Z. W., Kang, X. H., Yin, L., & Huang, J. (2019). Combination analysis of the physiology and transcriptome provides insights into the mechanism of silver nanoparticles phytotoxicity. Environmental Pollution, 252, 1539–1549.

    CAS  PubMed  Google Scholar 

  • Zhang, Q., Su, L. J., Chen, J. W., Zeng, X. Q., Sun, B. Y., & Peng, C. L. (2012). The antioxidative role of anthocyanins in Arabidopsis under high-irradiance. Biologia Plantarum, 56, 97–104.

    Google Scholar 

  • Zhao, S., Dai, Y., & Xu, L. (2018). Toxicity and transfer of CuO nanoparticles on Arabidopsis thaliana. IOP Conference series: Earth and Environmental Science, 113, 012021. https://doi.org/10.1088/1755-1315/113/1/012021.

    Article  Google Scholar 

  • Zulfiqar, F., Navarro, M., Ashraf, M., Akram, N. A., & Munné-Bosch, S. (2019). Nano fertilizer use for sustainable agriculture: Advantages and limitations. Plant Science, 289, 110270. https://doi.org/10.1016/j.plantsci.2019.110270.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinilal Bhaskaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhaskaran, S., Sahi, S. (2021). Response to Engineered Nanomaterials in Arabidopsis thaliana, a Model Plant. In: Sharma, N., Sahi, S. (eds) Nanomaterial Biointeractions at the Cellular, Organismal and System Levels. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-65792-5_4

Download citation

Publish with us

Policies and ethics