Skip to main content

Improving of the Identification Algorithm for a Quasilinear Recurrence Equation

  • Conference paper
  • First Online:
Advances in Optimization and Applications (OPTIMA 2020)

Abstract

Identification of quasilinear recurrence equations (QRE) may be reduced to the problem of regression analysis with mutually dependent observable variables. It is possible to use the generalized least deviations method (GLDM) for such problems. GLDM-estimation consists of solving the sequence of the WLDM-estimation problems. We propose the algorithm to solve the WLDM-estimation problem. Computational complexity of this algorithm does not exceed the quantity \(O(N^2T+T^2)\), where N is the number of coefficients in the considered equation, T is the number of observed readings. The computational complexity of solving practical GLDM estimation problems does not exceed \(O(N^3T+NT^2)\). Results of computational experiments to solve the problem of identifying the recurrence equation of the stock market index in Iraq by original data from the site “ISX-IQ.net” are presented. This results show the possibility to apply a second order quasilinear recurrence equation with quadratic nonlinearity for these purposes. Perhaps increasing the order of the recurrence equation and the accuracy of the calculations give better results.

The work is supported by Act 211 Government of the Russian Federation, contract No. 02.A03.21.0011.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. www.isx-iq.net. (in Arabic)

  2. Akimov, P.A., Maslov, A.I.: Levels of nonoptimality of the Wciszfcld algorithm in the least modules method. Autom. Remote Control 71(2), 172–184 (2010). https://doi.org/10.1134/S0005117910020025

    Article  MathSciNet  Google Scholar 

  3. Ayvazyan, S.A., Enyukov, I.S., Meshalkin, L.: Prikladnaya statistika: Issledovanie zavisimostey. Appl. Stat.: Dependency Stud. M: Finansy i statistika (1985). (in Russian)

    Google Scholar 

  4. Bloomheld, P., Steiger, W.L.: Least Absolute Deviations: Theory, Applications, and Algorithms. Birkhauser, Boston-Basel-Stuttgart (1983)

    Google Scholar 

  5. Dielman, E.T.: Least absolute value regression: recent contributions. J. Stat. Comput. Simul. 75(4), 263–286 (2003). https://doi.org/10.1080/0094965042000223680

    Article  MathSciNet  MATH  Google Scholar 

  6. Huber, P., Ronchetti, E.: Robust Statistics, 2nd edn. Wiley, Hoboken (2009)

    Book  Google Scholar 

  7. Mandelbrot, B.B.: New methods in statistical economics. J. Polit. Econ. 71, 421–440 (1963)

    Article  Google Scholar 

  8. Mandelbrot, B.B.: The variation of certain speculative prices. In: The Random Character of Stock Market Prices, p. 510. M.I.T. Press, Cambridge (1964)

    Google Scholar 

  9. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman, New York (1982)

    MATH  Google Scholar 

  10. Mezaal, Y.A.: Chislennoye issledovaniye determinirovannoy modeli kvazilineynogo analiza vremennykh ryadov [numerical study of the deterministic model of quasilinear analysis for time series]. Nauchnyy obozrevatel [Sci. Obser.] (9), 5–11 (2019). (in Russian). http://nauchoboz.ru/wp-content/uploads/2019/10/Nauchoboz-9-2019.pdf

  11. Minoux, M.: Programmation mathematique: theorie et algorithmes [Mathematical programming: theory and algorithms]. Bordas et. C.N.P.T. - E.N.S.T., Paris (1989). (in French)

    Google Scholar 

  12. Mudrov, V.I., Kushko, V.L.: Melody obrabotki izmereniy: kvazipravdopodobnye otsenk (Measurement Processing Methods: Quasi-Truth Estimates), 3rd edn. Levand, Moscow (2014). (in Russian)

    Google Scholar 

  13. Pan, J., Wang, H., Qiwei, Y.: Weighted least absolute deviations estimation for arma models with infinite variance. Economet. Theory 23(3), 852–879 (2007)

    Article  MathSciNet  Google Scholar 

  14. Panyukov, A.V., Mezaal, Y.A.: Stable estimation of autoregressive model parameters with exogenous variables on the basis of the generalized least absolute deviation method. In: IFAC-PapersOnLine, vol. 51, pp. 1666–1669 (2018). https://doi.org/10.1016/j.ifacol.2018.08.217. Open access

  15. Panyukov, A.V., Mezaal, Y.A.: Parametricheskaya identifikatsiya kvazilineynogo raznostnogo uravneniya [parametric identification of the quasilinear difference equation]. Bull. South Ural State Univ. Ser. Math. Modell. Program. Comput. Softw. 11(4), 32–38 (2019). https://doi.org/10.14529/mmp180104. (in Russian)

    Article  Google Scholar 

  16. Panyukov, A.V., Mezaal, Y.A.: Parametricheskaya identifikatsiya kvazilineynogo raznostnogo uravneniya [parametric identification of the quasilinear difference equation]. Bull. South Ural State Univ. Ser. Math. Mech. Phys. 11(4), 32–38 (2019). https://doi.org/10.14529/mmph190404. (in Russian)

    Article  Google Scholar 

  17. Panyukov, A.: Scalability of algorithms for arithmetic operations in radix notation. Reliable Comput. 19, 417–434 (2015). http://interval.louisiana.edu/reliable-computing-journal/volume-19/reliable-computing-19-pp-417-434.pdf

  18. Panyukov, A., Gorbik, V.: Using massively parallel computations for absolutely precise solution of the linear programming problems. Autom. Remote Control 73(2), 276–290 (2012). https://doi.org/10.1134/S0005117912020063

    Article  MathSciNet  MATH  Google Scholar 

  19. Panyukov, A., Tyrsin, A.: Stable parametric identification of vibratory diagnostics objects. J. Vibroeng. 10(2), 142–146 (2008). http://elibrary.ru/item.asp?id=14876532

    Google Scholar 

  20. Powell, J.L.: Least absolute deviations estimation for the censored regression model. J. Econometr. 25, 303–325 (1984)

    Article  MathSciNet  Google Scholar 

  21. Rosen, J.B.: The gradient projection method for nonlinear programming, part 1: linear constraints. J. Soc. Ind. Appl. Math. 8, 181–217 (1960)

    Article  Google Scholar 

  22. Tyrsin, A.N., Azaryan, A.F.: Exact evaluation of linear regression models by the least absolute deviations method based on the descent through the nodal straight lines. Bull. South Ural State Univ. Ser. “Math. Mech. Phys.” 10(2), 47–56 (2018). https://doi.org/10.14529/mmph180205. (in Russian)

    Article  MATH  Google Scholar 

  23. Tyrsin, A.: Robust construction of regression models based on the generalized least absolute deviations method. J. Math. Sci. 139(3), 6634–6642 (2006). https://doi.org/10.1007/s10958-006-0380-7

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly V. Panyukov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panyukov, A.V., Mezaal, Y.A. (2020). Improving of the Identification Algorithm for a Quasilinear Recurrence Equation. In: Olenev, N., Evtushenko, Y., Khachay, M., Malkova, V. (eds) Advances in Optimization and Applications. OPTIMA 2020. Communications in Computer and Information Science, vol 1340. Springer, Cham. https://doi.org/10.1007/978-3-030-65739-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65739-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65738-3

  • Online ISBN: 978-3-030-65739-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics