Skip to main content

A Method of Finding Optimal Parameters of Speckle Noise Reduction Filters

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2020, ruSMART 2020)

Abstract

The reduction of multiplicative speckle noise in synthetic aperture radar (SAR) images is an important problem. Many speckle noise reduction filters have been proposed. Most of them have several parameters that control their operation. Finding the optimal values of these parameters is often a non-trivial task. A method of automating the search for optimal parameters is proposed. The method uses two variants of a specially designed test image, original noise free image and the same image but with speckle noise added. Then the Structural Similarity Index (SSIM) metric is used for finding the parameters that make the filtered image as close to the original noise free image as possible. The application of the method is illustrated using the Frost filter applied to various images, but the method can be used for any filter type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moroz, A.V., Davydov, V.V.: Fiber-optical system for transmitting heterodyne signals in active phased antenna arrays of radar stations. J. Phys. Conf. Ser. 1368, 022024 (2019)

    Article  Google Scholar 

  2. Filimonov, A.V., Zemlyakov, V.E., Egorkin, V.I., Maslevtsov, A.V., Wurz, M.C., Vainshtein, S.N.: Nanosecond miniature transmitters for pulsed optical radars. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART/NsCC -2017. LNCS, vol. 10531, pp. 490–497. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67380-6_45

    Chapter  Google Scholar 

  3. Tsikin, I.A., Poklonskaya, E.S.: Accuracy of secondary surveillance radar system remote analysis station. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART/NsCC -2017. LNCS, vol. 10531, pp. 598–606. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67380-6_56

    Chapter  Google Scholar 

  4. Tarasenko, M.Y., Lenets, V.A., Malanin, K.Y., Akulich, N.V., Davydov, V.V.: Features of use direct and external modulation in fiber optical simulators of a false target for testing radar station. J. Phys. Conf. Ser. 1038, 012035 (2018)

    Article  Google Scholar 

  5. Pavlov V.A., Belov A.A., Tuzova, A.A.: Implementation of synthetic aperture radar processing algorithms on the Jetson TX1 platform. In: IEEE International Conference on Electrical Engineering and Photonics (EExPolytech) 2019, St. Petersburg, Russia, pp. 90–93 (2019)

    Google Scholar 

  6. Özdemii̇r, C.: Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms, p. 387. Wiley, New Jersey (2012)

    Google Scholar 

  7. M. Skolnik: Radar handbook. McGraw-Hill, 2008

    Google Scholar 

  8. Brown, W.M., Porcello, L.J.: An introduction to synthetic-aperture radar. IEEE Spectr. 6(9), 52–62 (1969)

    Article  Google Scholar 

  9. Chan, Y.K., Koo, V.C.: An introduction to synthetic aperture radar (SAR). Progr. Electromagnet. Res. 62, 27–60 (2008)

    Article  Google Scholar 

  10. Oliver, C., Quegan, S.: Understanding Synthetic Aperture Radar Images. SciTech Publishing, Raleigh, NC (2004)

    Google Scholar 

  11. Goodman, J.: Some fundamental properties of speckle. J. Opt. Soc. Am. 66(11), 1145–1150 (1976)

    Article  Google Scholar 

  12. Fursov,V., Zherdev, D., Kazanskiy, N.: Support subspaces method for synthetic aperture radar automatic target recognition. Int. J. Adv. Robot. Syst. 13(5) (2016)

    Google Scholar 

  13. Frost, S.: A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. 4(2), 157–166 (1982)

    Article  Google Scholar 

  14. Goldfinger, A.D.: Estimation of spectra from speckled images. IEEE Trans. Aerosp. Electron. Syst. AES 18(5), 675–681 (1982)

    Article  Google Scholar 

  15. Dong, X., Zhang, D., Cui, K.: Spatial filtering strategies on deforestation detection using SAR image textures. In: CIE International Conference on Radar (RADAR), pp. 1–4 (2016)

    Google Scholar 

  16. Lee, J.-S., Wen, J.-H., Ainsworth, T.L.: Improved sigma filter for speckle filtering of SAR imagery. IEEE Trans. Geosci. Remote Sens. 47(1), 202–213 (2009)

    Article  Google Scholar 

  17. Prakash, K.B., Babu, R.V., Gopal, B.: Image independent filter for removal of speckle noise. Int. J. Comput. Sci. Issues 8(5), 196–201 (2011). no. 3

    Google Scholar 

  18. Gifani, P., Behnam, H., Sani, Z.A.: Noise reduction of echocardiographic images based on temporal information. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(4), 620–630 (2014)

    Article  Google Scholar 

  19. Sarode, V., Deshmukh, P.R.: Reduction of speckle noise and image enhancement of images using filtering technique. Int. J. Adv. Technol. 2011, 30–38 (2011)

    Google Scholar 

  20. Lopera, O., Heremans, R., Pizurica, A., Dupont, Y.: Filtering speckle noise in SAS images to improve detection and identification of seafloor targets. Int. Water Side Secur. Conf. 2010, 1–4 (2010)

    Google Scholar 

  21. Kuznetsova, O.B., Savchenko, E.A., Andryakov, A.A., Savchenko, E.Y., Musakulova, Z.A.: Image processing in total internal reflection fluorescence microscopy. J. Phys: Conf. Ser. 1236(1), 1–6 (2019)

    Google Scholar 

  22. Korobeynikov, A.G., Grishentsev, A.Yu., Velichko, E.N., Korikov, C.C., Aleksanin, S.A., Fedosovskii, M.E., Bondarenko, I.B.: Calculation of regularization parameter in the problem of blur removal in digital image. Opt. Memory Neural Netw. 25(3), 184–191 (2016). https://doi.org/10.3103/S1060992X16030036

    Article  Google Scholar 

  23. Andryakov, A.A.: Image filtering for the nanosatellite vision system. J. Phys: Conf. Ser. 1326(1), 1–7 (2019)

    Google Scholar 

  24. Swati A. Gandhi, C.V. Kulkarni: MSE Vs SSIM. International Journal of Scientific & Engineering Research, vol. 4, no. 7, pp. 930–934, July-2013

    Google Scholar 

  25. Wang, Z., Bovik, A.C., Sheikh, H.R.: Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 13(4), 1–14 (2004)

    Article  Google Scholar 

  26. Singh, P., Shree, R.: A new SAR image despeckling using directional smoothing filter and method noise thresholding. Eng. Sci. Technol. Int. J. 21, 589–610 (2018)

    Google Scholar 

  27. Jiao, S., Dong, W.: SAR image quality assessment based on SSIM using textural feature. In: Seventh International Conference on Image and Graphics, pp. 281–286 (2013)

    Google Scholar 

  28. Abramov, S., et al.: Methods for blind estimation of speckle variance in SAR images: simulation results and verification for real-life data. In: Awrejcewicz, J. (ed.) Computational and Numerical Simulations, pp. 303–327. Intech Open (2014)

    Google Scholar 

  29. Choi, H., Jeong, J.: Speckle noise reduction technique for SAR images using statistical characteristics of speckle noise and discrete wavelet transform. Remote Sens. 11, 1184 (2019)

    Article  Google Scholar 

  30. Xie, H., Pierce, L.E., Ulaby, F.T.: Statistical properties of logarithmically transformed speckle. IEEE Trans. Geosci. Remote Sens. 40(3), 721–727 (2002)

    Article  Google Scholar 

  31. Singh, P., Pandey, R.: Speckle noise: modelling and implementation. Int. J. Circ. Theor. Appl. 9, 8717–8727 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna A. Tuzova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Belov, A.A., Pavlov, V.A., Tuzova, A.A. (2020). A Method of Finding Optimal Parameters of Speckle Noise Reduction Filters. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2020 2020. Lecture Notes in Computer Science(), vol 12526. Springer, Cham. https://doi.org/10.1007/978-3-030-65729-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65729-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65728-4

  • Online ISBN: 978-3-030-65729-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics