Skip to main content

Enzyme Cascade Reaction Engineering

Abstract

Biocatalytic transformations are of growing interest due to their high chemo-, regio-, and enantioselectivity, sustainability, and biocompatibility. In order to build on these advantages, to reinforce them, and not to weaken them, as well as to ensure the fulfillment of economic framework conditions, it is important to harmonize the reaction with its best suitable reactor and operation mode. In this chapter, three ideal reactor types and their biocatalytic conversion equations are presented for different inhibition scenarios, facilitating the proper bioreactor selection. Important aspects in the implementation of an enzymatic cascade are discussed and the introduced equations are exemplarily illustrated for a cascade reaction. In order to highlight different emerging approaches for cascade engineering, miniaturized flow bioreactors are discussed, and examples of recent publications are presented.

Keywords

  • Enzyme cascades
  • Reactor configurations
  • Kinetic modelling
  • Michaelis–Menten kinetics
  • Flow biocatalysis
  • Enzymatic process optimization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-65718-5_7
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-65718-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.00
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4
Fig. 7.5
Fig. 7.6
Fig. 7.7
Fig. 7.8
Fig. 7.9
Fig. 7.10

References

  1. Abu R, Woodley JM (2015) Application of enzyme coupling reactions to shift thermodynamically limited biocatalytic reactions. ChemCatChem 7(19):3094–3105

    CAS  CrossRef  Google Scholar 

  2. Jaeger K-E, Liese A, Syldatk C (2018) Einführung in die enzymtechnologie. Springer-Verlag GmbH, Berlin. https://doi.org/10.1007/978-3-662-57619-9

    CrossRef  Google Scholar 

  3. Illanes A, Wilson L, Vera C (2013) Problem solving in enzyme biocatalysis. Wiley, New York. https://doi.org/10.1002/9781118341742

    CrossRef  Google Scholar 

  4. Tamborini L, Fernandes P, Paradisi F, Molinari F (2018) Trends Biotechnol 36:73–88. https://doi.org/10.1016/j.tibtech.2017.09.005

    CAS  CrossRef  PubMed  Google Scholar 

  5. Thompson MP, Peñafiel I, Cosgrove SC, Turner NJ (2019) Org Process Res Dev 23:9–18. https://doi.org/10.1021/acs.oprd.8b00305

    CAS  CrossRef  Google Scholar 

  6. Britton J, Majumdar S, Weiss GA (2018) Chem Soc Rev 47:5891–5918. https://doi.org/10.1039/C7CS00906B

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Sheldon RA, Woodley JM (2018) Chem Soc Rev 118:801–838. https://doi.org/10.1021/acs.chemrev.7b00203

    CAS  CrossRef  Google Scholar 

  8. Adamo A, Beingessner RL, Behnam M, Chen J, Jamison TF, Jensen KF, Monbaliu J-CM, Myerson AS, Revalor EM, Snead DR, Stelzer T, Weeranoppanant N, Wong SY, Zhang P (2016) Science 352:61–67. https://doi.org/10.1126/science.aaf1337

    CAS  CrossRef  PubMed  Google Scholar 

  9. Chapman MR, Cosgrove SC, Turner NJ, Kapur N, Blacker J (2018) Angew Chem Int Ed 57:10535–10539. https://doi.org/10.1002/anie.201803675

    CAS  CrossRef  Google Scholar 

  10. Plutschack MB, Pieber B, Gilmore K, Seeberger PH (2017) Chem Rev 117:11796–11893. https://doi.org/10.1021/acs.chemrev.7b00183

    CAS  CrossRef  PubMed  Google Scholar 

  11. Bana P, Örkenyi R, Lövei K, Lakó A, Túrós GI, Éles J, Faigl F, Greiner I (2017) Bioorg Med Chem 25:6180–6189. https://doi.org/10.1016/j.bmc.2016.12.046

    CAS  CrossRef  PubMed  Google Scholar 

  12. Bolivar JM, Nidetzky B (2013) Chimica Oggi-Chem Today 31:50–54

    CAS  Google Scholar 

  13. Žnidaršič-Plazl P (2014) Chimica Oggi-Chem Today 32:54–60

    Google Scholar 

  14. Hugentobler KG, Rasparini M, Thompson LA, Jolley KE, Blacker AJ, Turner NJ (2017) Org Process Res Dev 21:195–199. https://doi.org/10.1021/acs.oprd.6b00346

    CAS  CrossRef  Google Scholar 

  15. De Santis P, Meyer LE, Kara S (2020) React Chem Eng 5:2155–2184. http://dx.doi.org/10.1039/D0RE00335B

    Google Scholar 

  16. O'Mahony RM, Lynch D, Hayes HLD, Thuama EN, Donnellan P, Jones RC, Glennon B, Collins SG, Maguire AR (2017) Eur J Org Chem 2017:6533–6539. https://doi.org/10.1002/ejoc.201700871

    CAS  CrossRef  Google Scholar 

  17. Ringborg RH, Pedersen AT, Woodley J (2017) ChemCatChem 9:3285–3288. https://doi.org/10.1002/cctc.201700811

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Tomaszewski B, Schmid A, Buehler K (2014) Org Process Res Dev 18:1516–1526. https://doi.org/10.1021/op5002116

    CAS  CrossRef  Google Scholar 

  19. Znidarsic-Plazl P (2014) Chimica Oggi-Chem Today 32:54–60

    CAS  Google Scholar 

  20. Zheng M-M, Chen F-F, Li H, Li C-X, Xu J-H (2018) Chembiochem 19:347–353. https://doi.org/10.1002/cbic.201700415

    CAS  CrossRef  PubMed  Google Scholar 

  21. Brahma A, Musio B, Ismayilova U, Nikbin N, Kamptmann SB, Siegert P, Jeromin GE, Ley SV, Pohl M (2016) Synlett 27:262–266. https://doi.org/10.1055/s-0035-1560644

    CAS  CrossRef  Google Scholar 

  22. Luckarift HR, Ku BS, Dordick JS, Spain JC (2007) Biotechnol Bioeng 98:701–705. https://doi.org/10.1002/bit.21447

    CAS  CrossRef  PubMed  Google Scholar 

  23. Bhattacharya S, Schiavone M, Gomes J, Bhattacharya SK (2004) J Biotechnol 111:203–217. https://doi.org/10.1016/j.jbiotec.2004.04.002

    CAS  CrossRef  PubMed  Google Scholar 

  24. Vejvoda V, Kaplan O, Kubáč D, Křen V, Martínková L (2006) Biocatal Biotransformation 24:414–418. https://doi.org/10.1080/10242420601033910

    CAS  CrossRef  Google Scholar 

  25. Strompen S, Weiß M, Gröger H, Hilterhaus L, Liese A (2013) Adv Synth Catal 355:2391–2399. https://doi.org/10.1002/adsc.201300236

    CAS  CrossRef  Google Scholar 

  26. Burgahn T, Pietrek P, Dittmeyer R, Rabe KS, Niemeyer CM (2020) ChemCatChem 12:2452–2460. https://doi.org/10.1002/cctc.202000145

    CAS  CrossRef  Google Scholar 

  27. Scherkus C, Schmidt S, Bornscheuer UT, Gröger H, Kara S, Liese A (2016) ChemCatChem 8:3446–3452. https://doi.org/10.1002/cctc.201600806

    CAS  CrossRef  Google Scholar 

  28. Scherkus C, Schmidt S, Bornscheuer UT, Gröger H, Kara S, Liese A (2017) Biotechnol Bioeng 114:1215–1221. https://doi.org/10.1002/bit.26258

    CAS  CrossRef  PubMed  Google Scholar 

  29. Srinivasamurthy VST, Böttcher D, Engel J, Kara S, Bornscheuer UT (2020) Process Biochem 88:22–30. https://doi.org/10.1016/j.procbio.2019.10.009

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selin Kara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Petermeier, P., Kara, S. (2021). Enzyme Cascade Reaction Engineering. In: Kara, S., Rudroff, F. (eds) Enzyme Cascade Design and Modelling. Springer, Cham. https://doi.org/10.1007/978-3-030-65718-5_7

Download citation