Skip to main content

Enzyme Cascade Design: Retrosynthesis Approach

  • Chapter
  • First Online:
Enzyme Cascade Design and Modelling

Abstract

Retrosynthetic analysis for the design of synthetic routes towards target molecules is well-established in organic chemistry, and has been extended to include biocatalysis in recent years. The increasing number of transformations known to be catalysed by enzymes, whilst ultimately rendering biocatalytic retrosynthesis more powerful, necessitates the use of computational tools if biocatalysis is to reach its full potential. In the following chapter, we outline the pipeline required to go from pathway generation towards a target molecule, to construction of selected optimal pathways in the laboratory and the techniques currently used to analyse them. We compare manual vs. computer-assisted approaches for each step of the workflow. Current computational tools used for automated identification of suitable enzymes, such as molecular fingerprinting and structure-based substrate docking, and the evaluation of metrics that can be used to rank order the generated pathways, will also be discussed. Finally, we discuss a number of recent high-throughput analytical techniques for the experimental validation of potential pathways, leveraging the design-build-test-analyse cycle for pathway improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corey EJ (1967) General methods for the construction of complex molecules. Pure Appl Chem 14:19–38

    Article  CAS  Google Scholar 

  2. Corey EJ, Cheng X-M (1989) The logic of chemical synthesis. Wiley, New York

    Google Scholar 

  3. Corey EJ, Kürti L (2010) Enantioselective chemical synthesis. Methods, logic and practice. Direct Book, Dallas

    Google Scholar 

  4. Warren S (1978) Designing organic syntheses: a programmed introduction to the synthon approach. Wiley, Hoboken

    Google Scholar 

  5. Turner NJ, O’Reilly E (2013) Biocatalytic retrosynthesis. Nat Chem Biol 9:285–288

    Article  CAS  PubMed  Google Scholar 

  6. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485:185–194

    Article  CAS  PubMed  Google Scholar 

  7. Devine PN, Howard RM, Kumar R, Thompson MP, Truppo MD, Turner NJ (2018) Extending the application of biocatalysis to meet the challenges of drug development. Nat Rev Chem 2:409–421

    Article  Google Scholar 

  8. Faber K, Fessner W-D, Turner NJ (2015) Biocatalysis in organic synthesis. Science of synthesis, volumes 1, 2 & 3. Thieme, Stuttgart

    Google Scholar 

  9. de Souza ROMA, Miranda LSM, Bornscheuer UT (2017) A retrosynthesis approach for biocatalysis in organic synthesis. Chem Eur J 23:12040–12063

    Article  PubMed  CAS  Google Scholar 

  10. Zhang RK, Chen K, Huang X, Wohlschlager L, Renata H, Arnold FH (2019) Enzymatic assembly of carbon–carbon bonds via iron-catalysed sp3 C–H functionalization. Nature 565:67–72

    Article  CAS  PubMed  Google Scholar 

  11. Liese A, Pesci L (2015) Enzyme classification and nomenclature and biocatalytic retrosynthesis. In: Faber K, Fessner W-D, Turner NJ (eds) Sci. synth. biocatal. org. synth. 1. Springer, New York, pp 41–75

    Google Scholar 

  12. Walsh CT, Tang Y (2017) Natural product biosynthesis: chemical logic and enzymatic machinery. Royal Society of Chemistry, London

    Google Scholar 

  13. Parmeggiani F, Rué Casamajo A, Colombo D, Ghezzi MC, Galman JL, Chica RA, Brenna E, Turner NJ (2019) Biocatalytic retrosynthesis approaches to d -(2,4,5-trifluorophenyl) alanine, key precursor of the antidiabetic sitagliptin. Green Chem 21:4368–4379

    Article  CAS  Google Scholar 

  14. Szymkuć S, Gajewska EP, Klucznik T, Molga K, Dittwald P, Startek M, Bajczyk M, Grzybowski BA (2016) Computer-assisted synthetic planning: the end of the beginning. Angew Chem Int Ed. https://doi.org/10.1002/anie.201506101

  15. Delépine B, Duigou T, Carbonell P, Faulon JL (2018) RetroPath2.0: a retrosynthesis workflow for metabolic engineers. Metab Eng 45:158–170

    Article  PubMed  CAS  Google Scholar 

  16. Stine A, Zhang M, Ro S, Clendennen S, Shelton MC, Tyo KEJ, Broadbelt LJ (2016) Exploring de novo metabolic pathways from pyruvate to propionic acid. Biotechnol Prog 32:303–311

    Article  CAS  PubMed  Google Scholar 

  17. Coley CW, Green WH, Jensen KF (2018) Machine learning in computer-aided synthesis planning. Acc Chem Res 51:1281–1289

    Article  CAS  PubMed  Google Scholar 

  18. Plehiers PP, Marin GB, Stevens CV, Van Geem KM (2018) Automated reaction database and reaction network analysis: extraction of reaction templates using cheminformatics. J Cheminform 10:1–18

    Article  CAS  Google Scholar 

  19. Duigou T, Du Lac M, Carbonell P, Faulon JL (2019) Retrorules: a database of reaction rules for engineering biology. Nucleic Acids Res 47:D1229–D1235

    Article  PubMed  Google Scholar 

  20. Grzybowski BA, Szymkuć S, Gajewska EP, Molga K, Dittwald P, Wołos A, Klucznik T (2018) Chematica: a story of computer code that started to think like a chemist. Chem 4:390–398

    Article  CAS  Google Scholar 

  21. Bajczyk MD, Dittwald P, Wołos A, Szymkuć S, Grzybowski BA (2018) Discovery and enumeration of organic-chemical and biomimetic reaction cycles within the network of chemistry. Angew Chem Int Ed 57:2367–2371

    Article  CAS  Google Scholar 

  22. Finnigan W, Hepworth LJ, Flitsch SL, Turner NJ (2020) RetroBioCat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades. Nat Catal. https://doi.org/10.1038/s41929-020-00556-z

  23. Landrum G (2016) RDKit: Open-source cheminformatics software

    Google Scholar 

  24. Heath RS, Birmingham WR, Thompson MP, Taglieber A, Daviet L, Turner NJ (2019) An engineered alcohol oxidase for the oxidation of primary alcohols. ChemBioChem 20:276–281

    CAS  PubMed  Google Scholar 

  25. Batista VF, Galman JL, Pinto DC, Silva AMS, Turner NJ (2018) Monoamine oxidase: tunable activity for amine resolution and functionalization. ACS Catal 8:11889–11907

    Article  CAS  Google Scholar 

  26. Rudroff F, Mihovilovic MD, Gröger H, Snajdrova R, Iding H, Bornscheuer UT (2018) Opportunities and challenges for combining chemo- and biocatalysis. Nat Catal 1:12–22

    Article  Google Scholar 

  27. Coley CW, Rogers L, Green WH, Jensen KF (2017) Computer-assisted retrosynthesis based on molecular similarity. ACS Cent Sci 3:1237–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang L, Dash S, Ng CY, Maranas CD (2017) A review of computational tools for design and reconstruction of metabolic pathways. Synth Syst Biotechnol 2:243–252

    Article  PubMed  PubMed Central  Google Scholar 

  29. Campodonico MA, Andrews BA, Asenjo JA, Palsson BO, Feist AM (2014) Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path. Metab Eng 25:140–158

    Article  CAS  PubMed  Google Scholar 

  30. Segler MHS, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chem Eur J 23:5966–5971

    Article  CAS  PubMed  Google Scholar 

  31. Sheridan RP, Zorn N, Sherer EC, Campeau LC, Chang C, Cumming J, Maddess ML, Nantermet PG, Sinz CJ, O’Shea PD (2014) Modeling a crowdsourced definition of molecular complexity. J Chem Inf Model 54:1604–1616

    Article  CAS  PubMed  Google Scholar 

  32. Adams JP, Brown MJB, Diaz-Rodriguez A, Lloyd RC, Roiban GD (2019) Biocatalysis: a pharma perspective. Adv Synth Catal 361:2421–2432

    CAS  Google Scholar 

  33. Thai YC, Szekrenyi A, Qi Y, Black GW, Charnock SJ, Fessner WD (2018) Fluorogenic kinetic assay for high-throughput discovery of stereoselective ketoreductases relevant to pharmaceutical synthesis. Bioorg Med Chem 26:1320–1326

    Article  CAS  PubMed  Google Scholar 

  34. Mak WS, Tran S, Marcheschi R, Bertolani S, Thompson J, Baker D, Liao JC, Siegel JB (2015) Integrative genomic mining for enzyme function to enable engineering of a non-natural biosynthetic pathway. Nat Commun 6:1–9

    Article  CAS  Google Scholar 

  35. Black GW, Brown NL, Perry JJB, Randall PD, Turnbull G, Zhang M (2015) A high-throughput screening method for determining the substrate scope of nitrilases. Chem Commun 51:2660–2662

    Article  CAS  Google Scholar 

  36. Alma’abadi AD, Gojobori T, Mineta K (2015) Marine metagenome as a resource for novel enzymes. Genomics Proteomics Bioinformatics 13:290–295

    Article  PubMed  PubMed Central  Google Scholar 

  37. Currin A, Swainston N, Day PJ, Kell DB (2015) Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 44:1172–1239

    Article  CAS  PubMed  Google Scholar 

  38. Sheppard MJ, Kunjapur AM, Wenck SJ, Prather KLJ (2014) Retro-biosynthetic screening of a modular pathway design achieves selective route for microbial synthesis of 4-methyl-pentanol. Nat Commun 5:1–10

    Article  CAS  Google Scholar 

  39. Carbonell P, Jervis AJ, Robinson CJ et al (2018) An automated design-build-test-learn pipeline for enhanced microbial production of fine chemicals. Commun Biol 1:1–10

    Article  Google Scholar 

  40. Jeske L, Placzek S, Schomburg I, Chang A, Schomburg D (2019) BRENDA in 2019: a European ELIXIR core data resource. Nucleic Acids Res 47:D542–D549

    Article  CAS  PubMed  Google Scholar 

  41. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361

    Article  CAS  PubMed  Google Scholar 

  42. Breitling R, Turner NJ, Faulon J-L, Swainston N, Wong J, Takano E, Carbonell P, Scrutton NS, Kell DB (2018) Selenzyme: enzyme selection tool for pathway design. Bioinformatics 34:2153–2154

    Article  PubMed  CAS  Google Scholar 

  43. Gunera J, Kindinger F, Li SM, Kolb P (2017) PrenDB, a substrate prediction database to enable biocatalytic use of prenyltransferases. J Biol Chem 292:4003–4021

    Article  CAS  PubMed  Google Scholar 

  44. Savelli B, Li Q, Webber M, Jemmat AM, Robitaille A, Zamocky M, Mathé C, Dunand C (2019) RedoxiBase: a database for ROS homeostasis regulated proteins. Redox Biol 26:1–5

    Article  CAS  Google Scholar 

  45. Fischer M, Pleiss J (2003) The lipase engineering database: a navigation and analysis tool for protein families. Nucleic Acids Res 31:319–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Buchholz PCF, Vogel C, Reusch W, Pohl M, Rother D, Spieß AC, Pleiss J (2016) BioCatNet: a database system for the integration of enzyme sequences and biocatalytic experiments. ChemBioChem 17:2093–2098

    Article  CAS  PubMed  Google Scholar 

  47. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:490–495

    Article  CAS  Google Scholar 

  48. Finnigan W, Thomas A, Cromar H, Gough B, Snajdrova R, Adams JP, Littlechild JA, Harmer NJ (2017) Characterization of carboxylic acid reductases as enzymes in the toolbox for synthetic chemistry. ChemCatChem 9:1005–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kumar A, Zhang KYJ (2018) Advances in the development of shape similarity methods and their application in drug discovery. Front Chem. https://doi.org/10.3389/fchem.2018.00315

  50. Landrum G (2016) RDKit: open-source cheminformatics software

    Google Scholar 

  51. Yang M, Fehl C, Lees K V., Lim EK, Offen WA, Davies GJ, Bowles DJ, Davidson MG, Roberts SJ, Davis BG (2018) Functional and informatics analysis enables glycosyltransferase activity prediction. Nat Chem Biol. https://doi.org/10.1038/s41589-018-0154-9

  52. Muegge I, Mukherjee P (2016) An overview of molecular fingerprint similarity search in virtual screening. Expert Opin Drug Discovery 11:137–148

    Article  CAS  Google Scholar 

  53. Kombo DC, Tallapragada K, Jain R, Chewning J, Mazurov AA, Speake JD, Hauser TA, Toler S (2013) 3D molecular descriptors important for clinical success. J Chem Inf Model 53:327–342

    Article  CAS  PubMed  Google Scholar 

  54. Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A (2018) Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 4:268–276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Gerlt JA, Bouvier JT, Davidson DB, Imker HJ, Sadkhin B, Slater DR, Whalen KL (2015) Enzyme function initiative-enzyme similarity tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim Biophys Acta 1854:1019–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ghislieri D, Green AP, Pontini M, Willies SC, Rowles I, Frank A, Grogan G, Turner NJ (2013) Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products. J Am Chem Soc 135:10863–10869

    Article  CAS  PubMed  Google Scholar 

  57. Berman HM, Battistuz T, Bhat TN et al (2002) The protein data bank. Acta Crystallogr Sect D Biol Crystallogr 58:899–907

    Article  CAS  Google Scholar 

  58. Jacob RB, Andersen T, McDougal OM (2012) Accessible high-throughput virtual screening molecular docking software for students and educators. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1002499

  59. Hawkins PCD, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50:74–82

    Article  CAS  PubMed  Google Scholar 

  60. Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9:91–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hu Z, Southerland W (2007) WinDock: structure-based drug discovery on windows-based PCs. J Comput Chem 28:2347–2351

    Article  CAS  PubMed  Google Scholar 

  62. Bullock C, Cornia N, Jacob R, Remm A, Peavey T, Weekes K, Mallory C, Oxford JT, McDougal OM, Andersen TL (2013) DockoMatic 2.0: high throughput inverse virtual screening and homology modeling. J Chem Inf Model 53:2161–2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu X, Huang M, Zou X (2018) Docking-based inverse virtual screening: methods, applications, and challenges. Biophys Rep 4:1–16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kellenberger E, Muller P, Schalon C, Bret G, Foata N, Rognan D (2006) sc-PDB: an annotated database of druggable binding sites from the protein data bank. J Chem Inf Model 46:717–727

    Article  CAS  PubMed  Google Scholar 

  65. Huang SY, Grinter SZ, Zou X (2010) Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Phys Chem Chem Phys 12:12899–12908

    Article  CAS  PubMed  Google Scholar 

  66. Zoete V, Daina A, Bovigny C, Michielin O (2016) SwissSimilarity: a web tool for low to ultra high throughput ligand-based virtual screening. J Chem Inf Model 56:1399–1404

    Article  CAS  PubMed  Google Scholar 

  67. Schomburg KT, Bietz S, Briem H, Henzler AM, Urbaczek S, Rarey M (2014) Facing the challenges of structure-based target prediction by inverse virtual screening. J Chem Inf Model 54:1676–1686

    Article  CAS  PubMed  Google Scholar 

  68. Plante J, Werner S (2018) JPlogP: an improved logP predictor trained using predicted data. J Cheminform 10:1–10

    Article  CAS  Google Scholar 

  69. Klamt A, Jonas V, Bürger T, Lohrenz JCW (1998) Refinement and parametrization of COSMO-RS. J Phys Chem A 102:5074–5085

    Article  CAS  Google Scholar 

  70. Gadhave A (2014) Determination of hydrophilic-lipophilic balance value. Int J Sci Res 3:573–575

    Google Scholar 

  71. Delaney JS (2004) ESOL: estimating aqueous solubility directly from molecular structure. J Chem Inf Comput Sci 44:1000–1005

    Article  CAS  PubMed  Google Scholar 

  72. Jain N, Yalkowsky SH (2001) Estimation of the aqueous solubility I: application to organic nonelectrolytes. J Pharm Sci 90:234–252

    Article  CAS  PubMed  Google Scholar 

  73. Tieves F, Tonin F, Fernández-Fueyo E, Robbins JM, Bommarius B, Bommarius AS, Alcalde M, Hollmann F (2019) Energising the E-factor: the E+-factor. Tetrahedron 75:1311–1314

    Article  CAS  Google Scholar 

  74. Ni Y, Holtmann D, Hollmann F (2014) How green is biocatalysis? to calculate is to know. ChemCatChem 6:930–943

    Article  CAS  Google Scholar 

  75. Flamholz A, Noor E, Bar-Even A, Milo R (2012) EQuilibrator - the biochemical thermodynamics calculator. Nucleic Acids Res 40:770–775

    Article  CAS  Google Scholar 

  76. Mavrovouniotis ML (1990) Group contributions for estimating standard Gibbs energies of formation of biochemical compounds in aqueous solution. Biotechnol Bioeng 36:1070–1082

    Article  CAS  PubMed  Google Scholar 

  77. Sebaugh JL (2011) Guidelines for accurate EC50/IC50 estimation. Pharm Stat 10:128–134

    Article  CAS  PubMed  Google Scholar 

  78. Planson AG, Carbonell P, Paillard E, Pollet N, Faulon JL (2012) Compound toxicity screening and structure-activity relationship modeling in Escherichia coli. Biotechnol Bioeng 109:846–850

    Article  CAS  PubMed  Google Scholar 

  79. Liu W, Wang P (2007) Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol Adv 25:369–384

    Article  CAS  PubMed  Google Scholar 

  80. Arnold FH (2018) Directed evolution: bringing new chemistry to life. Angew Chem Int Ed 57:4143–4148

    Article  CAS  Google Scholar 

  81. France SP, Hepworth LJ, Turner NJ, Flitsch SL (2017) Constructing biocatalytic cascades: in vitro and in vivo approaches to de novo multi-enzyme pathways. ACS Catal 7:710–724

    Article  CAS  Google Scholar 

  82. France SP, Hussain S, Hill AM, Hepworth LJ, Howard RM, Mulholland KR, Flitsch SL, Turner NJ (2016) One-pot cascade synthesis of mono- and disubstituted piperidines and pyrrolidines using carboxylic acid reductase (CAR), ω -transaminase (ω-TA), and imine reductase (IRED) biocatalysts. ACS Catal 6:3753–3759

    Article  CAS  Google Scholar 

  83. Hepworth LJ, France SP, Hussain S, Both P, Turner NJ, Flitsch SL (2017) Enzyme cascades in whole cells for the synthesis of chiral cyclic amines. ACS Catal 7:2920–2925

    Article  CAS  Google Scholar 

  84. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  PubMed  Google Scholar 

  85. Sabbadin F, Hyde R, Robin A, Hilgarth E, Delenne M, Flitsch S, Turner N, Grogan G, Bruce NC (2010) LICRED: A versatile drop-in vector for rapid generation of redox-self-sufficient cytochrome P450s. Eur J Chem Biol 11:987–994

    CAS  Google Scholar 

  86. Shetty RP, Endy D, Knight TF (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:1–12

    Article  CAS  Google Scholar 

  87. Both P, Busch H, Kelly PP, Mutti FG, Turner NJ, Flitsch SL (2016) Whole-cell biocatalysts for stereoselective C-H amination reactions. Angew Chem Int Ed 55:1511–1513

    Article  CAS  Google Scholar 

  88. Rosano GL, Morales ES, Ceccarelli EA (2019) New tools for recombinant protein production in Escherichia coli: A 5-year update. Protein Sci 28:1412–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ricca E, Brucher B, Schrittwieser JH (2011) Multi-enzymatic cascade reactions: overview and perspectives. Adv Synth Catal 353:2239–2262

    Article  CAS  Google Scholar 

  90. Simon RC, Richter N, Busto E, Kroutil W (2014) Recent developments of cascade reactions involving ω-transaminases. ACS Catal 4:129–143

    Article  CAS  Google Scholar 

  91. Quin MB, Wallin KK, Zhang G, Schmidt-Dannert C (2017) Spatial organization of multi-enzyme biocatalytic cascades. Org Biomol Chem 15:4260–4271

    Article  CAS  PubMed  Google Scholar 

  92. Sperl JM, Sieber V (2018) Multienzyme cascade reactions - status and recent advances. ACS Catal 8:2385–2396

    Article  CAS  Google Scholar 

  93. Schrittwieser JH, Velikogne S, Hall M, Kroutil W (2018) Artificial biocatalytic linear cascades for preparation of organic molecules. Chem Rev 118:270–348

    Article  CAS  PubMed  Google Scholar 

  94. Kulig J, Sehl T, Mackfeld U, Wiechert W, Pohl M, Rother D (2019) An enzymatic 2-step cofactor and co-product recycling cascade towards a chiral 1,2-diol. Part I: cascade design. Adv Synth Catal 361:2607–2615

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Klenk JM, Nebel BA, Porter JL et al (2017) The self-sufficient P450 RhF expressed in a whole cell system selectively catalyses the 5-hydroxylation of diclofenac. Biotechnol J 12:1600520

    Article  CAS  Google Scholar 

  96. Hoschek A, Bühler B, Schmid A (2017) Overcoming the gas–liquid mass transfer of oxygen by coupling photosynthetic water oxidation with biocatalytic oxyfunctionalization. Angew Chem Int Ed 56:15146–15149

    Article  CAS  Google Scholar 

  97. Bunzel HA, Garrabou X, Pott M, Hilvert D (2018) Speeding up enzyme discovery and engineering with ultrahigh-throughput methods. Curr Opin Struct Biol 48:149–156

    Article  CAS  PubMed  Google Scholar 

  98. Yan C, Parmeggiani F, Jones EA, Claude E, Hussain SA, Turner NJ, Flitsch SL, Barran PE (2017) Real-time screening of biocatalysts in live bacterial colonies. J Am Chem Soc 139:1408–1411

    Article  CAS  PubMed  Google Scholar 

  99. Yan C, Schmidberger JW, Parmeggiani F, Hussain SA, Turner NJ, Flitsch SL, Barran P (2016) Rapid and sensitive monitoring of biocatalytic reactions using ion mobility mass spectrometry. Analyst 141:2351–2355

    Article  CAS  PubMed  Google Scholar 

  100. Dusny C, Lohse M, Reemtsma T, Schmid A, Lechtenfeld OJ (2019) Quantifying a biocatalytic product from a few living microbial cells using microfluidic cultivation coupled to FT-ICR-MS. Anal Chem 91:7012–7018

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Turner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Finnigan, W., Flitsch, S.L., Hepworth, L.J., Turner, N.J. (2021). Enzyme Cascade Design: Retrosynthesis Approach. In: Kara, S., Rudroff, F. (eds) Enzyme Cascade Design and Modelling. Springer, Cham. https://doi.org/10.1007/978-3-030-65718-5_2

Download citation

Publish with us

Policies and ethics