Skip to main content

Minerals and the Origin of Life

  • Chapter
  • First Online:
Minerals latu sensu and Human Health

Abstract

Since ancient times, philosophers and scientists have sought to unravel the origins of life on Earth. The identification of the environment, of the natural physicochemical conditions, and how the primitive forms of life emerged and evolved still remains to be discovered. The chapter, based on the available scientific literature, identifies and discusses five main prevailing hypotheses for the origins of life on Earth based on more or less elaborated data: extraterrestrial or panspermia hypothesis (with origin and transport in meteorites and comets); clay hypothesis; submarine volcanic chimney or vent hypothesis; terrestrial hot spring hypothesis; and serpentinization hypothesis. In all the hypotheses referred to minerals, clay minerals and metal sulfide minerals in particular would have played decisive roles. As a matter of fact, minerals represent challenging substrates for life, since they are sources of nutrients and energy for prokaryotes (bacteria and archaea), single-celled organisms, to appear and evolve. The chapter ends mentioning that research goes on and expectations are high regarding the better understanding of the origin of both the solar system and life on Earth. Scientists hope to get relevant information from the very recent sample collected on the carbon-rich rocky Bennu asteroid by NASA’s OSIRIS-REx probe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bada JL (2004) How life began on Earth: a status report. Earth Planet Sci Lett 226:1–15

    Article  Google Scholar 

  • Bada JL, Lazcano A (2002) Some like it hot, but not the first biomolecules. Science 296:1982–1983

    Article  Google Scholar 

  • Barge LM, Abedian Y, Russell MJ, Doloboff IJ, Cartwright JH, Kidd RD, Kanik K (2015) From chemical gardens to fuell cells: generation of electrical potential and current across self-assembling iron mineral membranes. Angew Chem 127:8302–8305

    Article  Google Scholar 

  • Baross JA, Hoffman SE (1985) Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig Life Evol Biosph 15:327–345

    Article  Google Scholar 

  • Bernal JD (1949) The physical basis of life. Proc Phys Soc Sect A 62:746–747

    Article  Google Scholar 

  • Brack A (2006) Chapter 7.4: Clay minerals and the origin of life. In: Developments in clay science, vol 1. Elsevier, pp 379–391

    Google Scholar 

  • Brack A (2007) From the origin of life on earth to life in the universe. In: Horneck G, Rettberg P (eds) Complete course in astrobiology. WILEY-VCH Verlag GmbH & Co, Weinheim. ISBN: 978-3-527-40660-9

    Google Scholar 

  • Brazelton WJ, Nelson B, Schrenk MO (2012) Metagenomic evidence for H oxidation and H production by serpentinite-hosted subsurface microbial communities. Front Microbiol 2. https://doi.org/10.3389/fmicb.2011.00268

  • Caillère S, Rautureau M (1974) Détermination des silicates phylliteux des météorites carbonées par microscopie et diffraction électroniques. C. R. Acad Sc. Paris, t 279 (12 août 1974), Série D -539

    Google Scholar 

  • Cairns-Smith AG (1982) Genetic takeover. Cambridge University Press, Cambridge, 133pp

    Google Scholar 

  • Cairns-Smith AG (1985) Seven clues to the origin of Life: a scientific detective story. Cambridge University Press, Cambridge. 131pp

    Google Scholar 

  • Cairns-Smith AG (2002) The origin of life: clays. In: Frontiers of life, vol 1. Cambridge University Press, Cambridge, pp 169–192

    Google Scholar 

  • Cairns-Smith AG (2005) Sketches for a mineral genetic material. Elements 1:157–161

    Article  Google Scholar 

  • Cairns-Smith AG (2008) Chemistry and the missing era of evolution. Chem Eur J 14:3830–3839

    Article  Google Scholar 

  • Cairns-Smith AG, Hartman H (1986) Clay minerals and the origin of life. Cambridge University Press, Cambridge, 193pp

    Google Scholar 

  • Callahan MP et al (seven co-authors) (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. PNAS (Proccedings of the National Academy of Sciences) of the United States of America 108, 13995–13998

    Google Scholar 

  • Callahan MP, Smith KE, Cleaves HJ, Ruzicka J, Stern JC, Glavin DP, House CH, Dworkin JP (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. PNAS, Organic Chemistry, Thiemens MH (editor)

    Google Scholar 

  • Cleaves HJ, Scott AM, Hill FC, Leszczynski J, Sahai N, Hazen R (2012) Mineral-organic interfacial processes: potential roles in the origins of life. Chem Soc Rev 41:5502–5525

    Article  Google Scholar 

  • Corliss JB, Baross JA, Hoffman SE (1981) A hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Oceanol Acta 4(suppl):59–69

    Google Scholar 

  • Dalai P, Kaddour H, Sahai N (2016) Incubating life: prebiotic sources of organics for the origin of life. Elements 12(6):401–406

    Article  Google Scholar 

  • Damer BF (2016) A field trip to the Archaean in search of Darwin’s warm little pond. Life 6(2):21

    Article  Google Scholar 

  • Damer BF, Deamer DW (2015) Coupled phases and combinatory selection in fluctuating hydrothermal pools: a scenario to guide experimental approaches to the origin of cellular life. Life 5:872–887

    Article  Google Scholar 

  • de Duve C (2003) A research proposal on the origin of life. Orig Life Evol Biosph 33:559–574

    Article  Google Scholar 

  • Deamer DW, Georgiou CD (2015) Hydrothermal conditions and the origin of cellular life. Astrobiology 15:1091–1095

    Google Scholar 

  • Djokic T, van Kranendonk MJ, Campbell KA, Walter MR, Ward CR (2017) Earliaest signs of life on land preserved in ca. 3.5Ga hot spring deposits. Nat Commun:15263

    Google Scholar 

  • dos Santos R, Patel M, Cuadros J, Martins Z (2016) Influence of mineralogy on the preservation of amino acids under simulated Mars conditions. Icarus 277:342–353

    Google Scholar 

  • Duval S, Baymann F, Schoepp-Cothenet B, Trolard F, Bourrié G, Grauby O, Branscomb E, Russell M, Nitschke W (2019) Fougerite: The not so simple progenitor of the first cells. Interface Focus 9: 20190063, The Royal Society Publishing

    Google Scholar 

  • Duval S, Branscomb E, Trolard F, Bourrié G, Grauby O, Heresanu V, Schoepp-Cothenet B, Zuchan K, Russell M, Nitsche W (2020) On the why’s and how’s of clay minerals importance in life’s emergence. Appl Clay Sci 195:105737. https://doi.org/10.1016/j.clay.2020.105737

  • Ehlmann BL, Mustard JF, Murchie SL (2010) Geologic setting of serpentine deposits on Mars. Geophys Res Lett 37. https://doi.org/10.1029/2010GL042596

  • Ertem G (2004) Montmorillonite, Oligonucleotides, RNA and Origin of Life. Orig Life Evol Biosphere 34:549–570

    Article  Google Scholar 

  • Ertem G, Ferris JP (1996) Synthesis of RNA oligomers on heterogeneous templates. Nature 379:238–240

    Google Scholar 

  • Ferris JP (1992) Marine hydrothermal systems and the origin of life: chemical markers of prebiotic chemistry in hydrothermal systems. Orig Life Evol Biosphere 22:109–134. https://doi.org/10.1007/BF01808020

  • Ferris JP (2005) Mineral catalysis and prebiotic synthesis: montmorillonite-catalyzed formation of RNA. Elements 1:145–149

    Article  Google Scholar 

  • Ferris JP (2006) Montmorillonite-catalysed formation of RNA oligomers: the possible role of catalysis in the origins of life. Phil Trans Royal Soc B 361:1777–1786

    Google Scholar 

  • Ferris JP, Ertem G (1993) Montmorillonite catalysis of RNA oligomer formation in aqueous solution: a model for the prebiotic formation of RNA. J Am Chem Soc 115, 12270–12275

    Google Scholar 

  • Ferris JP, Hill AR Jr, Liu R, Orgel LE (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381:59–61

    Article  Google Scholar 

  • Flores GE and 10 co-authors (2011) Microbiam community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge. Environ Microbiol 13, 2158–2171

    Google Scholar 

  • Galvez-Martinez S, Mateo-Marti E (2018) Utraviolet irradiation on a pyrite surface improves triglycine adsorption. Life 8:50. https://doi.org/10.3390/life8040050

  • Gilbert W (1986) Origins of life: the RNA world. Nature 318:618

    Article  Google Scholar 

  • Goldschmidt VM (1952) Geochemical aspects of the origin of complex organic molecules on the Earth, as precursors to organic life. New Biol 12:97–105

    Google Scholar 

  • Guttenberg N, Virgo N, Chandru K, Scharf C, Mamajanov I (2017) Bulk measurements of messy chemistries are needed for a theory of the origins of life. Philos Trans A Math Phys Eng Sci 375:20160347

    Google Scholar 

  • Hansma HG (2007) Mica and the origin of life: Cells without membrane. Mol Biol Cell 18 (suppl.), Abstract: 1910

    Google Scholar 

  • Hansma HG (2009) Could life originate between mica sheets? Mechanochemical biomolecular synthesis and the origins of life. In: Tamura N (ed) Probing mechanics at nanoscale dimensions, vol 1185. Materials Research Society, Warrendale, pp 1103–1115

    Google Scholar 

  • Hansma HG (2010) Possible origin of life between mica sheets. J Theor Biol 266:175–188

    Article  Google Scholar 

  • Hashizume H (2012) Chapter 10: Role of clay minerals in chemical evolution and the Origins of Life. In: Clay minerals in nature – their characterization, modification and application. InTECH, pp 191–208

    Google Scholar 

  • Hazen RM (2005) Genesis: rocks, minerals and the geochemical origin of life. Elements, an International Magazine of Mineralogy, Geochemistry and Petrology 1:135–137

    Google Scholar 

  • Hazen RM, Sverjensky DA (2010) Mineral surfaces, geochemical complexities, and the origins of life. Cold Spring Harb Perspect Biol 2

    Google Scholar 

  • Hazen RM, Papineau D, Bleeker W, Downs RT, Ferry JM, McCoy TJ, Sverjensky DA, Yang H (2008) Mineral evolution. Am Mineral 93:1693–1720

    Article  Google Scholar 

  • Hazen RM, Sverjensky DA, Azzolini D, Bish DL, Elmore AC, Hinnov L, Milliken RE (2013) Clay mineral evolution. Am Mineral. https://doi.org/10.2138/am.2013.4425

  • Holm NG (1992) Why are hydrothermal systems proposed as plausible environments for the origin of Life? Orig Life Evol Biosph 22:5–14

    Article  Google Scholar 

  • Holm NG, Charlou JL (2001) Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge. Earth Planet Sci Lett 191:1–8

    Article  Google Scholar 

  • Hoyle F, Wickramsinghe NC (1977) Polysaccharides and the infrared spectra of galactic sources. Nature 268:6109

    Article  Google Scholar 

  • Hoyle F, Wickramsinghe NC (2000) Astronomical origin of life, steps towards panspermia. Kluwer Academic Press, Dordrecht

    Book  Google Scholar 

  • Kee TP, Monnard P-A (2016) On the emergence of a proto-metabolism and the assembly of early protocells. Elements 12(6):419–424

    Google Scholar 

  • Kitadi N, Maruyama S (2018) Origins of building blocks of life: a review. Geosci Front 9:1117–1153

    Article  Google Scholar 

  • Kvenvolden KA, Lawless JG, Pering K, Peterson E, Flores J, Ponnamperuma C, Kaplan JR, Moore C (1970) Evidence for Extraterrestrial amino acids and hydrocarbons in the Murchinson ALH84001 meteorite. Nature 228:923–926

    Article  Google Scholar 

  • Lambert J-F (2008) Adsorption and polymerization of amino acids on mineral surfaces: a review. Orig Life Evol Biosph 38:211–242

    Article  Google Scholar 

  • Lambert J-F (2015) Origins of Life: From the mineral to the biochemical world. BIO Web of Conferences 4, 00012, https://doi.org/10.1051/bioconf/20150400012, EDP sciences

  • Lane N, Martin WF (2012) The origin of membrane bioenergetics. Cell 151:1406–1416

    Article  Google Scholar 

  • Lanier KA, Williams LD (2017) The origin of life: models and data. J Mol Evol 84:85–92. https://doi.org/10.1007/s00239-017-9783-y

    Article  Google Scholar 

  • Lazcano A, Miller SL (1994) How long did it take for life to begin and evolve to cyanobacteria? J Mol Evol 39:546–554

    Article  Google Scholar 

  • Li Y, Kitadi N, Nakamura R (2018) Chemical diversity of metal sulfide minerals and its implications for the origin of life. Life 8(46). https://doi.org/10.3390/life8040046

  • Liu T, Temprano I, Jenkins SJ, King DA, Driver SM (2012) Nitrogen adsorption and desorption at iron pyrite FeS2 100 surfaces. Phys Chem Chem Phys 14:11491–11499

    Article  Google Scholar 

  • Liu T, Temprano I, Jenkins SJ, King DA, Driver SM (2013) Low Temperature Synthesis of NH3 from Atomic N and H at the surfaces of FeS2{100} Crystals. J Phys Chem 117:10990–10998

    Google Scholar 

  • Llorca J (2004) Organic matter in meteorites. Int Microbiol 7:239–248

    Google Scholar 

  • Martin W, Russell MJ (2002) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B 385:59–85

    Google Scholar 

  • Martin W, Russell MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc Lond B Boil Sci 362:1887–1925

    Article  Google Scholar 

  • Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6:805–814

    Article  Google Scholar 

  • Martins Z (2011) Organic chemistry of carbonaceous meteorites. Elements 7(1):35–40

    Article  Google Scholar 

  • Martins Z, Seewald JS (2013) Serpentinites, hydrogen and life. Elements 9:129–134

    Google Scholar 

  • Martins Z, Alexander CMO, Orzechowska GE, Fogel M, Ehrenfreund P (2007) Indigenous amino acids in primitive CR meteorites. Meteorit Planet Sci 42(2):2125–2136

    Article  Google Scholar 

  • Maurel MC, Leclerc F (2016) From foundation stones to life: concepts and results. Elements 12(6):407–412

    Google Scholar 

  • McAdam MM, Sunshine JM, Howard KT, McCoy TM (2014) Spectral trends in aqueously altered CM/CI meteorites. In the Abstracts Book of the 51st Annual Meeting of CMS, “Everything is Big: From Nanoparticles to Planets”, pp 166–167

    Google Scholar 

  • McCollom TM, Seewald JS (2007) Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem Rev 107:382–401

    Google Scholar 

  • McCollom TM, Seewald JS (2013) Serpentinites, hydrogen and life. Elements 9:129–134

    Google Scholar 

  • McKay DS, Gibson EK, Thomas-Kerpta KL, Vali H, Romanek CS, Clemett SJ, Chillier DF (1996) Search for past life on Mar: Possible relic biogenic activity in Martian meteorite ALH84001. Science 273(issue 5277):924–930

    Article  Google Scholar 

  • McSween HY Jr, Ghosh A, Grimm RE, Wilson L, Young ED (2003) Thermal evolution models of asteroids. In: Bottke WF Jr et al (eds) Asteroids III. Univ. of Arizona, Tucson, pp 559–571

    Google Scholar 

  • Ménez B, Pasini V, Brunelli D (2012) Life in the hydrated suboceanic mantle. Nat Geosci 5:133–137

    Google Scholar 

  • Meunier A, Petit S, Cockell CS, El Albani A, Beaufort D (2010) The Fe-rich clay Microsystems in basalt-komatite lavas: importance of Fe-smectites for pre-biotic molecule catalysis during the Hadean eon. Orig Life Evol Biosph, Springer. https://doi.org/10.1007/s11084-010-9205-2

  • Miller SL (1953) A production of amino acids under possible primitive Earth’ conditions. Science 117:528–529

    Article  Google Scholar 

  • Miller SL (1955) Production of some organic compounds under possible primitive Earth’ conditions. J Am Chem Soc 77:2351–2361

    Google Scholar 

  • Miller SL, Lazcano A (1995) The Origin of Life: did it occur at high temperatures? J Mol Evol 41:689–692

    Google Scholar 

  • Miller SL, Orgel LE (1974) The origins of life on the earth. Englewood Cliffs (NJ), Prentice Hall

    Google Scholar 

  • Miller SL, Urey HC (1959) Organic compound synthesis on the primitive Earth. Science 130:245–251

    Article  Google Scholar 

  • Morrison SH, Runyon SE, Hazen RM (2018) The paleomineralogy of the Hadean Eon Revisited. Life 8:64. https://doi.org/10.3390/life8040064

    Article  Google Scholar 

  • Nakamura R, Takashima T, Kato S, Takai K, Yamamoto M, Hashimoto K (2010) Electrical current generation across a black smoker chimney. Angew Chem 122:7858–7860

    Article  Google Scholar 

  • Oparin AI (1938) The Origin of the Life. MacMillan, New York. (Original in Russian, 1924)

    Google Scholar 

  • Orgel LE (1986) RNA catalysis and the origin of life. J Theor Biol 123:127–149

    Article  Google Scholar 

  • Petersen JM et al (2011) Hydrogen is an anergy source for hydrothermal vent symbioses. Nature 476:176–180

    Google Scholar 

  • Pross A (2004) Causation and the origin of life: metabolism or replication first? Orig Life Evol Biosph 34:307–321

    Article  Google Scholar 

  • Rao M, Odom DG, Oró J (1980) Clays in prebiological chemistry. J Mol Evol 15(4):317–331

    Article  Google Scholar 

  • Russell MJ (2003) The importance of being alkaline. Science 302:580–581

    Article  Google Scholar 

  • Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc Lond 154:377–402

    Article  Google Scholar 

  • Russell MJ, Hall AJ (2006) The onset and early evolution of life. In: Memoir 198: evolution of early’s earth atmosphere, hydrosphere, and biosphere constraints from ore deposits. Geological Society of America, Boulder, pp 1–32

    Google Scholar 

  • Russell MJ, Hall AJ, Mellersh AR (2003) On the dissipation of thermal and chemical energies on the Early Earth. In: Natural and laboratory-simulated thermal geochemical processes. Springer, Dordrecht, pp 325–388

    Chapter  Google Scholar 

  • Sahai N, Kaddour H, Dalai P (2016) The transition from geochemistry to biogeochemistry. Elements 12(6):389–394

    Google Scholar 

  • Saladino R, Neri V, Crestini C, Costanzo G, Graciotti M, Di Mauro E (2008) Synthesis and degradation of nucleic acid components by formamide and iron sulfur minerals. J Am Chem Soc 130:15512–15518

    Article  Google Scholar 

  • Schoonen M, Smirnov A (2016) Staging life in an early warm ‘seltzer’ocean. Elements 12:395–400

    Article  Google Scholar 

  • Schopf JW (1993) Microfossils of the Early Archean Apex Chert: new evidence of the antiquity of life. Science 260:640–646

    Article  Google Scholar 

  • Schrenk MO, Brazelton WJ, Lang SQ (2013) Serpentinization, carbon, and deep life. Rev Mineral Geochem 75:575–606

    Google Scholar 

  • Schulte M, Blake D, Hoehler T, McCollom TM (2006) Serpentinization and its implications for life on the early Earth and Mars. Astrobiology 6:364–376

    Article  Google Scholar 

  • Shapiro R (1984) The improbability of prebiotic nucleic acid synthesis. Orig Life 14:565–570

    Google Scholar 

  • Shapiro R (2000) Hypothesis paper: A replicator was not involved in the origin of Life. IUBMB Life 49:173–176

    Google Scholar 

  • Shapiro R (2006) Small molecule interactions were central to the origin of Life. Q Rev Biol 81(2):105–125

    Article  Google Scholar 

  • Southam G (2012) Minerals as Substrates for Life: The Prokaryotic View. Elements 8:101–106

    Article  Google Scholar 

  • Tawfik DS (2010) Messy biology and the origins of evolutionary innovations. Nat Chem Biol 6:692–696

    Article  Google Scholar 

  • Tomeoka K, Buseck PR (1985) Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O, and Ni. Geo Cosmo Acta 49(10):2149–2163. https://doi.org/10.1016/0016-7037(85)90073-0

    Article  Google Scholar 

  • Tonelli G (2020) Genesis: the story of how everything eegan. Farrar, Straus, Giroux (publishers), 224pp, ISBN: 9780374600488

    Google Scholar 

  • Urey HC (1952) On the early chemical history of the Earth and the origin of Life. Proc Natr Acad Sci USA 38:351–363

    Article  Google Scholar 

  • Van Kranendonk M, Deamer D, Djokic T (2017) Life springs: life on Earth came from a hot volcanic pool, not the sea, new evidence suggests. Sci Am 317(2):28–35

    Article  Google Scholar 

  • Van Kranendonk M, Baumgartner R, Boyd E, Cady S, Campbell K, Czaja A, Damer B, Deamer D, Djokic T, Fiorentini M, Gangidine A, Havig J, Mulkidjanian A, Ruff S, Thordarson P (2018) Terrestrial hot springs and the origin of Life: implications for the search for life beyond earth. 49th Lunar and Planetary Ecience Conference 2018 (LPI Contrib. n. 2083)

    Google Scholar 

  • Velbel MA, Palmer EE (2011) Fine-grained serpentine in CM2 carbonaceous chondrites and its implications for the extent of aqueous alteration on the parent body: a review. Clay Clay Miner 59:416–432

    Article  Google Scholar 

  • Wade N (2003) How did life begin? The New York Times 11 November: F11

    Google Scholar 

  • Warmflash D, Weiss B (2005) Did life come from another world? Sci Am 293(5):64–71

    Article  Google Scholar 

  • Westall F, Hickman-Lewis K, Hinmam N, Gautret P, Campbell KA, Bréhéret JG, Foucher F, Hubert A, Sorieul S, Dass AV, Kee TP, Georgelin T, Brack A (2018) A hydrothermal-sedimentary context for the origin of life. Astrobiology 18(3):259–293. https://doi.org/10.1089/ast.2017.1680

    Article  Google Scholar 

  • Wӓchtershӓuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484

    Article  Google Scholar 

  • Wӓchtershӓuser G (1992) Groundworks for an evolutionary biochemistry: the iron-sulphur world. Prog Biophys Mol Biol 58:81–201

    Article  Google Scholar 

  • Wӓchtershӓuser G (2007) On the chemistry and evolution of the pioneer organism. Chem Biodivers 4:584–602

    Article  Google Scholar 

  • Yabuta H, Sandford SA, Meech KJ (2018) Organic molecules and volatiles in comets. Elements 14(2):101–106

    Article  Google Scholar 

  • Yamamoto M, Hakamura R, Takai K (2018) Deep-sea hydrothermal fields as natural power plants. ChemElectroChem 5:2162–2166

    Article  Google Scholar 

  • Zahnle KJ (2006) Earth’s earliest atmosphere. Elements 2:217–222

    Article  Google Scholar 

  • Zubay G (2000) Origins of life on the earth and in the cosmos, 2nd edn. Academic Press, San Diego

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celso S. F. Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gomes, C.S.F., Rautureau, M. (2021). Minerals and the Origin of Life. In: Gomes, C., Rautureau, M. (eds) Minerals latu sensu and Human Health. Springer, Cham. https://doi.org/10.1007/978-3-030-65706-2_8

Download citation

Publish with us

Policies and ethics