Skip to main content

Microchain: A Light Hierarchical Consensus Protocol for IoT Systems

  • Chapter
  • First Online:
Blockchain Applications in IoT Ecosystem

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

Abstract

While the large-scale Internet of Things (IoT) makes many new applications feasible, like Smart Cities, it also brings new concerns on data reliability, security, and privacy. The rapid evolution in blockchain technologies, which relied on a decentralized, immutable, and distributed ledger system for transaction data auditing, provides a prospective solution to address many issues for IoT security. The blockchain and smart contract enabled security mechanism for IoT applications have attracted increasing interests from both academia and industry. However, integrating cryptocurrency-oriented blockchain technologies into IoT systems meets tremendous challenges on scalability, storage capacity, security, and privacy. Particularly, the performance of blockchain networks significantly relies on the performance of consensus mechanisms, e.g., in terms of data confidentiality, transaction throughput, and network scalability. In this chapter, following an in-depth review of state-of-the-art blockchain networks, the key matrix of designing consensus mechanism for IoT networks are identified in terms of throughput, scalability, and security. To demonstrate a case study on designing scalable, lightweight blockchain protocols for IoT systems; a Microchain framework is introduced and a proof-of-concept prototype is implemented in a physical network environment. The experimental results verify the feasibility of integrating the Microchain into IoT systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Blasch, R. Xu, Y. Chen, G. Chen, D. Shen, Blockchain methods for trusted avionics systems (2019). arXiv preprint arXiv:1910.10638

    Google Scholar 

  2. M. Castro, B. Liskov, Practical byzantine fault tolerance and proactive recovery. ACM Trans. Comput. Syst. (TOCS) 20(4), 398–461 (2002)

    Google Scholar 

  3. M. Castro, B. Liskov, et al.: Practical byzantine fault tolerance, in OSDI, vol. 99 (1999), pp. 173–186

    Google Scholar 

  4. N. Chen, Y. Chen, Smart city surveillance at the network edge in the era of IoT: opportunities and challenges, in Smart Cities (Springer, Berlin, 2018), pp. 153–176

    Google Scholar 

  5. Ethereum Homestead Documentation. https://www.ethdocs.org/en/latest/index.html

  6. I. Eyal, A.E. Gencer, E.G. Sirer, R. Van Renesse, Bitcoin-ng: a scalable blockchain protocol, in Proceedings of the 13th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 16) (2016), pp. 45–59

    Google Scholar 

  7. Flask: A Pyhon Microframework. http://flask.pocoo.org/

  8. Y. Gilad, R. Hemo, S. Micali, G. Vlachos, N. Zeldovich, Algorand: scaling byzantine agreements for cryptocurrencies, in Proceedings of the 26th Symposium on Operating Systems Principles (ACM, New York, 2017), pp. 51–68

    Book  Google Scholar 

  9. J. Kwon, Tendermint: consensus without mining. Draft v. 0.6, fall 1, 11 (2014)

    Google Scholar 

  10. L. Lamport, R. Shostak, M. Pease, The byzantine generals problem. ACM Trans. Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)

    Google Scholar 

  11. X. Lin, R. Xu, Y. Chen, J. Lum, Enhance generalized exchange economy using blockchain: a time banking case study. The IEEE Blockchain Technical Briefs (2019). https://blockchain.ieee.org/technicalbriefs/march-2019/enhance-generalized-exchange-economy-using-blockchain-a-time-banking-case-study

  12. X. Lin, R. Xu, Y. Chen, J.K. Lum, A blockchain-enabled decentralized time banking for a new social value system, in Proceedings of the 2019 IEEE Conference on Communications and Network Security (CNS) (IEEE, New York, 2019), pp. 1–5

    Google Scholar 

  13. B. Liskov, J. Cowling, Viewstamped Replication Revisited (2012)

    Google Scholar 

  14. L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, P. Saxena, A secure sharding protocol for open blockchains, in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (ACM, New York, 2016), pp. 17–30

    Book  Google Scholar 

  15. D. Nagothu, R. Xu, S.Y. Nikouei, Y. Chen, A microservice-enabled architecture for smart surveillance using blockchain technology, in Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2) (IEEE, New York, 2018), pp. 1–4

    Book  Google Scholar 

  16. S. Nakamoto, Bitcoin: a peer-to-peer electronic cash system. Tech. rep., Manubot (2008)

    Google Scholar 

  17. S.Y. Nikouei, R. Xu, D. Nagothu, Y. Chen, A. Aved, E. Blasch, Real-time index authentication for event-oriented surveillance video query using blockchain, in Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2) (IEEE, New York, 2018), pp. 1–8

    Google Scholar 

  18. S.Y. Nikouei, R. Xu, Y. Chen, A. Aved, E. Blasch, Decentralized smart surveillance through microservices platform, in Sensors and Systems for Space Applications XII, vol. 11017 (International Society for Optics and Photonics, New York, 2019), p. 110170K

    Google Scholar 

  19. O. Novo, Blockchain meets IoT: an architecture for scalable access management in IoT. IEEE Internet Things J. 5(2), 1184–1195 (2018)

    Article  Google Scholar 

  20. B.M. Oki, B.H. Liskov, Viewstamped replication: a new primary copy method to support highly-available distributed systems, in Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed Computing (ACM, New York, 1988), pp. 8–17

    Google Scholar 

  21. pyca/cryptography documentation. https://cryptography.io/en/latest/

  22. F.B. Schneider, Implementing fault-tolerant services using the state machine approach: a tutorial. ACM Comput. Surv. (CSUR) 22(4), 299–319 (1990)

    Google Scholar 

  23. B. Schoenmakers, A simple publicly verifiable secret sharing scheme and its application to electronic voting, in Annual International Cryptology Conference (Springer, Berlin, 1999), pp. 148–164

    MATH  Google Scholar 

  24. M. Stadler, Publicly verifiable secret sharing, in International Conference on the Theory and Applications of Cryptographic Techniques (Springer, Berlin, 1996), pp. 190–199

    MATH  Google Scholar 

  25. SQLite. https://www.sqlite.org/index.html

  26. W. Wang, D.T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen, D.I. Kim, A survey on consensus mechanisms and mining strategy management in blockchain networks. IEEE Access 7, 22328–22370 (2019)

    Article  Google Scholar 

  27. R. Wu, B. Liu, Y. Chen, E. Blasch, H. Ling, G. Chen, A container-based elastic cloud architecture for pseudo real-time exploitation of wide area motion imagery (WAMI) stream. J. Signal Process. Syst. 88(2), 219–231 (2017)

    Article  Google Scholar 

  28. Y. Xiao, N. Zhang, J. Li, W. Lou, Y.T. Hou, Distributed consensus protocols and algorithms, in Blockchain for Distributed Systems Security (2019), p. 25

    Google Scholar 

  29. Y. Xiao, N. Zhang, W. Lou, Y.T. Hou, A survey of distributed consensus protocols for blockchain networks (2019). arXiv preprint arXiv:1904.04098

    Google Scholar 

  30. R. Xu, Y. Chen, E. Blasch, G. Chen, Blendcac: a blockchain-enabled decentralized capability-based access control for IoTs, in Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (IEEE, New York, 2018), pp. 1027–1034

    Google Scholar 

  31. R. Xu, Y. Chen, E. Blasch, G. Chen, Blendcac: a smart contract enabled decentralized capability-based access control mechanism for the IoT. Computers 7(3), 39 (2018)

    Google Scholar 

  32. R. Xu, X. Lin, Q. Dong, Y. Chen, Constructing trustworthy and safe communities on a blockchain-enabled social credits system, in Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (ACM, New Yotk, 2018), pp. 449–453

    Google Scholar 

  33. R. Xu, S.Y. Nikouei, Y. Chen, E. Blasch, A. Aved, BlendMAS: a blockchain-enabled decentralized microservices architecture for smart public safety, in The 2019 IEEE International Conference on Blockchain (Blockchain-2019) (IEEE, New York, 2019), pp. 1–8

    Google Scholar 

  34. R. Xu, G.S. Ramachandran, Y. Chen, B. Krishnamachari, BlendSM-DDM: Blockchain-enabled secure microservices for decentralized data marketplaces, in Proceedings of the 2019 IEEE International Smart Cities Conference (ISC2) (IEEE, New York, 2019)

    Google Scholar 

  35. R. Xu, S. Chen, L. Yang, Y. Chen, G. Chen, Decentralized autonomous imaging data processing using blockchain, in Multimodal Biomedical Imaging XIV, vol. 10871 (International Society for Optics and Photonics, New York, 2019), p. 108710U

    Google Scholar 

  36. R. Xu, Y. Chen, E. Blasch, G. Chen, Exploration of blockchain-enabled decentralized capability-based access control strategy for space situation awareness. Opt. Eng. 58, 58–16 (2019). https://doi.org/10.1117/1.oe.58.4.041609

    Google Scholar 

  37. R. Xu, Y. Chen, E. Blasch, G. Chen, Microchain: a hybrid consensus mechanism for lightweight distributed ledger for IoT (2019). arXiv preprint arXiv:1909.10948

    Google Scholar 

  38. R. Xu, Y. Chen, E. Blasch, G. Chen, A. Aved, D. Shen, Hybrid blockchain-enabled secure microservices fabric for decentralized multi-domain avionics systems, in Sensors and Systems for Space Applications XIII, vol. 11422. Journal of International Society for Optics and Photonics (2020), p. 114220

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, R., Chen, Y., Blasch, E. (2021). Microchain: A Light Hierarchical Consensus Protocol for IoT Systems. In: Choudhury, T., Khanna, A., Toe, T.T., Khurana, M., Gia Nhu, N. (eds) Blockchain Applications in IoT Ecosystem. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-65691-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65691-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65690-4

  • Online ISBN: 978-3-030-65691-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics