Skip to main content

Predicting UPDRS Scores in Parkinson’s Disease Using Voice Signals: A Deep Learning/Transfer-Learning-Based Approach

  • Conference paper
  • First Online:
Automatic Assessment of Parkinsonian Speech (AAPS 2019)

Abstract

In the last years, literature exhibits successful results in the automatic detection of Parkinson’s disease using voice/speech, especially for patients in medium or late stages of the disorder. By contrast, the prediction of the UPDRS scores -used to assess the severity of the disorder or the efficacy of treatments- has been shown to perform mostly poor. These results could be explained by the need of more complex machine learning models compared to the detection case, and the lack of large databases for properly training artificial intelligence models. To analyse possible solutions to these problems, this work will explore the potentiality of Deep Neural Network (DNN) and Convolutional Neural Network (CNN) models, along transfer learning approaches, for the automatic prediction of the UPDRS scores. Experiments are carried out using feature engineering and feature learning methodologies. In particular for feature engineering, a series of well-know features that are used to characterise vocal conditions are employed to train a DNN. Likewise, the feature learning approach is based on transformation of the input speech using Modulation spectra transformations to train a CNN, considering a transfer learning approach. For transfer learning, the networks will be trained using voice signals from patients of databases of organic and functional voice pathologies; following a network architecture that has been proven successful recently for voice quality assessment using the GRB scale. The approach includes the combination of feature learning and feature engineering approaches using a multimodal strategy. The fine-tuning procedure of the last layers in the second network will be carried out using two databases of PD patients. The results present insights about the potential of deep learning along with transfer learning strategies for the prediction of UPDRS score in parkinsonian speechs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anand, S., Skowronski, M.D., Shrivastav, R., Eddins, D.A.: Perceptual and quantitative assessment of dysphonia across vowel categories. J. Voice 33(4), 473–481 (2019)

    Article  Google Scholar 

  2. Arias-Londoño, J.D., Gómez-García, J.A., Godino-Llorente, J.I.: Multimodal and multi-output deep learning architectures for the automatic assessment of voice quality using the grb scale. IEEE J. Selected Topics Signal Proces. 20(2), 413–422 (2020)

    Article  Google Scholar 

  3. Arias-Londoño, J.D., Godino-Llorente, J.I.: Entropies from markov models as complexity measures of embedded attractors. Entropy 17(6), 3595–3620 (2015)

    Article  MathSciNet  Google Scholar 

  4. Arias-Londoño, J.D., Godino-Llorente, J.I., Sáenz-Lechón, N., Osma-Ruiz, V., Castellanos-Domínguez, G.: Automatic detection of pathological voices using complexity measures, noise parameters, and mel-cepstral coefficients. IEEE Trans. Biomed. Eng. 58(2), 370–379 (2011)

    Article  Google Scholar 

  5. Atlas, L., Shamma, S.A.: Joint acoustic and modulation frequency. EURASIP J. Adv. Signal Process. 2003(7), 310290 (2003)

    Article  Google Scholar 

  6. Baccianella, S., Esuli, A., Sebastiani, F.: Evaluation measures for ordinal regression. In: 2009 Ninth International Conference on Intelligent Systems Design and Applications, pp. 283–287. IEEE (2009)

    Google Scholar 

  7. Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., Bengio, Y.: End-to-end attention-based large vocabulary speech recognition. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4945–4949. IEEE (2016)

    Google Scholar 

  8. Bhidayasiri, R., Martinez-Martin, P.: Clinical Assessments in Parkinson’s Disease: Scales and Monitoring, vol. 132. Elsevier Inc., 1 edition (2017)

    Google Scholar 

  9. Cerasa, A.: Machine learning on Parkinson’s disease? Let’s translate into clinical practice. J. Neurosci. Methods 266, 161–162 (2016)

    Article  Google Scholar 

  10. Chen, W., Peng, C., Zhu, X., Wan, B., Wei, D.: SVM-based identification of pathological voices. In: Proceedings of 29th Annual International Conference of the IEEE EMBS, Lyon, France, pp. 3786–3789 (2007)

    Google Scholar 

  11. Cummins, N., Baird, A., Schuller, B.J.: Speech analysis for health: current state-of-the-art and the increasing impact of deep learning. Methods 151, 41–54 (2018)

    Article  Google Scholar 

  12. de Krom, G.: A cepstrum-based technique for determining a harmonics-to-noise ratio in speech signals. J. Speech Lang. Hear. Res. 36(2), 254–266 (1993)

    Article  Google Scholar 

  13. De Lau, L.M., Breteler, M.M.: Epidemiology of parkinson’s disease. Lancet Neurol. 5(6), 525–535 (2006)

    Article  Google Scholar 

  14. Espinoza-Cuadros, F., Fernández-Pozo, R., Toledano, D.T., Alcázar-Ramírez, J.D., Lopez-Gonzalo, E., Hernandez-Gomez, L.A.: Reviewing the connection between speech and obstructive sleep apnea. Biomed. Eng. Online 15(1), 20 (2016)

    Article  Google Scholar 

  15. Goetz, C.G., et al.: Movement disorder society-sponsored revision of the unified parkinson’s disease rating scale (mds-updrs): scale presentation and clinimetric testing results. Mov. Disord. 23(15), 2129–2170 (2008)

    Article  Google Scholar 

  16. Gómez-García, J.A., Moro-Velázquez, L., Godino-Llorente, J.I.: On the design of automatic voice condition analysis systems. part i: Review of concepts and an insight to the state of the art. Biomed. Signal Process. Control 51, 181–199 (2019)

    Article  Google Scholar 

  17. Gómez-García, J.A., Moro-Velázquez, L., Godino-Llorente, J.I.: On the design of automatic voice condition analysis systems part ii: Review of speaker recognition techniques and study on the effects of different variability factors. Biomed. Signal Process. Control 48, 128–143 (2019)

    Article  Google Scholar 

  18. Gómez-García, J.A., Moro-Velázquez, L., Mendes-Laureano, J., Castellanos-Domínguez, G., Godino-Llorente, J.I.: Emulating the perceptual capabilities of a human evaluator to map the GRB scale for the assessment of voice disorders. Eng. Appl. Artif. Intell. 82, 236–251 (2019)

    Article  Google Scholar 

  19. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems. pp. 2672–2680 (2014)

    Google Scholar 

  20. Gustavsson, A., et al.: Cost of disorders of the brain in Europe 2010. European Neuropsychopharmacology 21(10), 718–779 (2011)

    Google Scholar 

  21. Hentz, J.G., Mehta, S.H., Shill, H.A., Driver-Dunckley, E., Beach, T.G., Adler, C.H.: Simplified conversion method for unified parkinson’s disease rating scale motor examinations. Mov. Disord. 30(14), 1967–1970 (2015)

    Article  Google Scholar 

  22. Hinton, D., et al.: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  23. Hughes, A.J., Daniel, S.E., Ben-Shlomo, Y., Lees, A.J.: The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 125(4), 861–870 (2002)

    Article  Google Scholar 

  24. Kasuya, H., Ogawa, S., Mashima, K., Ebihara, S.: Normalized noise energy as an acoustic measure to evaluate pathologic voice. J. Acoust. Soc. Am. 80, 1329–1334 (1986)

    Article  Google Scholar 

  25. Little, M.A., McSharry, P.E., Roberts, S.J., Costello, D.A., Moroz, I.M.: Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. Biomed. Eng. Online 6(23), (2007)

    Google Scholar 

  26. Markaki, M., Stylianou, Y.: Voice pathology detection and discrimination based on modulation spectral features. IEEE Trans. Audio Speech Lang. Process. 19(7), 1938–1948 (2011)

    Article  Google Scholar 

  27. Martínez-Martín, P., et al.: Parkinson’s disease severity levels and mds-unified parkinson’s disease rating scale. Parkinsonism Rel. Disord. 21(1), 50–54 (2015)

    Article  Google Scholar 

  28. Michaelis, D., Gramss, T., Strube, H.W.: Glottal-to-noise excitation ratio - a new measure for describing pathological voices. Acustica/Acta Acustica 83, 700–706 (1997)

    Google Scholar 

  29. Moro-Velázquez, L., Gómez-García, J.A., Godino-Llorente, J.I.: Voice pathology detection using modulation spectrum-optimized metrics. Front. Bioeng. Biotechnol. 4(1) (2016)

    Google Scholar 

  30. Moro-Velázquez, L., Gómez-García, J.A., Godino-Llorente, J.I., Andrade-Miranda, G.: Modulation spectra morphological parameters: a new method to assess voice pathologies according to the GRBAS scale. BioMed. Res. Int. 2015 (2015)

    Google Scholar 

  31. Moro-Velazquez, L., Gómez-García, J.A., Godino-Llorente, J.I., Grandas-Perez, F., Shattuck-Hufnagel, S., Yagüe-Jimenez, V., Dehak, N.: Phonetic relevance and phonemic grouping of speech in the automatic detection of parkinson’s disease. Scientific Reports 9(1), 1–16 (2019)

    Article  Google Scholar 

  32. Moro-Velazquez, L., Gomez-Garcia, J.A., Godino-Llorente, J.I., Villalba, J., Orozco-Arroyave, J.R., Dehak, N.: Analysis of speaker recognition methodologies and the influence of kinetic changes to automatically detect parkinsonś disease. Appl. Soft Comput. 62, 649–666 (2018)

    Article  Google Scholar 

  33. Moro-Velazquez, L., et al.: A forced gaussians based methodology for the differential evaluation of parkinson’s disease by means of speech processing. Biomed. Signal Process. Control 48, 205–220 (2019)

    Article  Google Scholar 

  34. Oktay, A.B., Kocer, A.: Differential diagnosis of parkinson and essential tremor with convolutional lstm networks. Biomed. Signal Process. Control 56, 101683 (2020)

    Article  Google Scholar 

  35. Orozco-Arroyave, J.R., Arias-Londoño, J.D., Vargas-Bonilla, J.F., Gonzalez-Rátiva, M.C., Nöth, E.: New spanish speech corpus database for the analysis of people suffering from parkinson’s disease, pp. 342–347 (2014)

    Google Scholar 

  36. Patel, S., Parveen, S., Anand, S.: Prosodic changes in parkinson’s disease. J. Acoust. Soc. Am. 140(4), 3442–3442 (2016)

    Article  Google Scholar 

  37. Pfeiffer, R.F., Wszolek, Z.K., Ebadi, M.: Parkinson’s Disease. CRC Press (2013)

    Google Scholar 

  38. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. 88, 2297–2301 (1991)

    Article  MathSciNet  Google Scholar 

  39. Povey, D.: The kaldi speech recognition toolkit. In: IEEE 2011 Workshop on Automatic Speech Recognition and Understanding. IEEE Signal Processing Society (2011) IEEE Catalog No.: CFP11SRW-USB

    Google Scholar 

  40. Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker verification using adapted gaussian mixture models. Digit. Signal Proc. 10(1–3), 19–41 (2000)

    Article  Google Scholar 

  41. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6), 2039–2049 (2000)

    Article  Google Scholar 

  42. Rusz, J., Cmejla, R., Ruzickova, H., Ruzicka, E.: Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated parkinson’s disease. J. Acoust. Soc. Am. 129(1), 350–367 (2011)

    Article  Google Scholar 

  43. Shinde, S.: Predictive markers for Parkinson’s disease using deep neural nets on neuromelanin sensitive MRI. Neuroimage: Clinical 22, 101748 (2019)

    Google Scholar 

  44. Vásquez-Correa, J.C., Orozco-Arroyave, J.R., Bocklet, T., Nöth, E.: Towards an automatic evaluation of the dysarthria level of patients with parkinson’s disease. J. Commun. Disord. 76, 21–36 (2018)

    Article  Google Scholar 

  45. Xie, H.-B., He, W.-X., Liu, H.: Measuring time series regularity using nonlinear similarity-based sample entropy. Phys. Lett. A 372(48), 7140–7146 (2008)

    Article  Google Scholar 

  46. Xu, L.S., Wang, K.Q., Wang, L.: Gaussian kernel approximate entropy algorithm for analyzing irregularity of time series. In: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, China, pp. 5605–5608 (2005)

    Google Scholar 

  47. Zanin, M., Zunino, L., Rosso, O.A., Papo, D.: Permutation entropy and its main biomedical and econophysics applications: a review. Entropy 14(12), 1553–1577 (2012)

    Article  Google Scholar 

  48. Zhang, Z., Cummins, N., Schuller, B.: Advanced data exploitation in speech analysis: an overview. IEEE Signal Process. Mag. 34(4), 107–129 (2017)

    Article  Google Scholar 

  49. Zhao, J., Mao, X., Chen, L.: Speech emotion recognition using deep 1D & 2D CNN LSTM networks. Biomed. Signal Process. Control 47, 312–323 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Universidad de Antioquia, Medellín, Colombia, and the Ministry of Economy and Competitiveness of Spain under grant DPI2017-83405-R1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián D. Arias-Londoño .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arias-Londoño, J.D., Gómez-García, J.A. (2020). Predicting UPDRS Scores in Parkinson’s Disease Using Voice Signals: A Deep Learning/Transfer-Learning-Based Approach. In: Godino-Llorente, J.I. (eds) Automatic Assessment of Parkinsonian Speech. AAPS 2019. Communications in Computer and Information Science, vol 1295. Springer, Cham. https://doi.org/10.1007/978-3-030-65654-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65654-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65653-9

  • Online ISBN: 978-3-030-65654-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics