Skip to main content

CMS-UNet: Cardiac Multi-task Segmentation in MRI with a U-Shaped Network

  • Conference paper
  • First Online:
Myocardial Pathology Segmentation Combining Multi-Sequence Cardiac Magnetic Resonance Images (MyoPS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12554))

Abstract

Precise segmentation of myocardial pathology is significant for the assessment of myocardial infarction (MI). Generally, manual segmentation of myocardial pathology is burdensome and time-consuming, and the burden of disease assessment is greatly increased when considering multi-modal images. To better detect the correlations across modalities and adequately leverage the complementary information between them, we present an end-to-end architecture for automatic cardiac multi-task segmentation in magnetic resonance images (MRI) with a U-shaped network (CMS-UNet), which simultaneous segmenting left ventricular (LV) blood pool, LV myocardium, right ventricular (RV) blood pool, myocardial edema, and myocardial scars. In this work, multi-modal data are employed as the input of the network, which merely utilizes one shared encoder for extracting the feature information of different modalities respectively. Therefore, our network can automatically explore the correlations between modalities and better learn the complicated and interdependent feature representation of each modality. In decoder, we aggregated the feature information extracted from different modalities and exploited a channel reconstruction upsampling (CRU) to restore the pixel-level prediction while addressing the problem of missing more detailed information, especially for edge in bilinear upsampling. In addition, we adopted a multi-scale convolution module (MSCM) at the top of the network to capture multi-scale features, which is extremely beneficial for achieving accurate segmentation results. We evaluated our approach on the Multi-sequence CMR based Myocardial Pathology Segmentation Challenge 2020 (MyoPS 2020) dataset, and obtained the Dice 0.581 for the myocardial scars and the average Dice 0.725 for the myocardial edema and myocardial scars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhuang, X.: Multivariate mixture model for cardiac segmentation from multi-sequence MRI. In: Ourselin, S., Joskowicz, L., Sabuncu, Mert R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 581–588. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_67

    Chapter  Google Scholar 

  2. Zhuang, X.: Multivariate mixture model for myocardial segmentation combining multi-source images. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 2933–2946 (2019)

    Article  Google Scholar 

  3. Zabihollahy, F., White, J.A., Ukwatta, E.: Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images. Med. Phys. 46(4), 1740–1751 (2019)

    Article  Google Scholar 

  4. Li, L., Weng, X., Schnabel, J. A., Zhuang, X.: Joint left atrial segmentation and scar quantification based on a DNN with spatial encoding and shape attention. arXiv preprint arXiv:2006.13011 (2020)

  5. Li, L., et al.: Atrial scar quantification via multi-scale CNN in the graph-cuts framework. Med. Image Anal. 60, 101595 (2020)

    Article  Google Scholar 

  6. Clèrigues A., Valverde, S., Bernal, J., Freixenet, J., Oliver, A., Lladó, X.: SUNet: a deep learning architecture for acute stroke lesion segmentation and outcome prediction in multimodal mri. arXiv preprint arXiv:1810.13304 (2018)

  7. Cui, S., Mao, L., Jiang, J., Liu, C., Xiong, S.: Automatic semantic segmentation of brain gliomas from MRI images using a deep cascaded neural network. J. Healthc. Eng. 2018(1), 1–14 (2018)

    Google Scholar 

  8. Dolz, J., Desrosiers, C., Ben Ayed, I.: IVD-Net: intervertebral disc localization and segmentation in mri with a multi-modal UNet. In: Zheng, G., Belavy, D., Cai, Y., Li, S. (eds.) CSI 2018. LNCS, vol. 11397, pp. 130–143. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13736-6_11

    Chapter  Google Scholar 

  9. Dolz, J., Gopinath, K., Yuan, J., Lombaert, H., Desrosiers, C., Ayed, I.B.: HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation. IEEE Trans. Med. Imaging 38(5), 1116–1126 (2018)

    Article  Google Scholar 

  10. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2019)

    Article  Google Scholar 

  11. Takikawa, T., Acuna, D., Jampani, V., Fidler, S.: Gated-SCNN: gated shape CNNs for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5228–5237 (2019)

    Google Scholar 

  12. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3141–3149 (2019)

    Google Scholar 

  13. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, William M., Frangi, Alejandro F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38

    Chapter  Google Scholar 

  16. Tong, Q., Ning, M., Si, W., Liao, X., Qin, J.: 3D deeply-supervised U-Net based whole heart segmentation. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 224–232. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_24

    Chapter  Google Scholar 

  17. Zhou, X.Y., Yang, G.Z.: Normalization in training U-Net for 2-D biomedical semantic segmentation. IEEE Robot. Autom. Lett. 4(2), 1792–1799 (2019)

    Article  MathSciNet  Google Scholar 

  18. Chen, C., et al.: Unsupervised multi-modal style transfer for cardiac MR segmentation. In: Pop, M., Sermesant, M., Camara, O., Zhuang, X., Li, S., Young, A., Mansi, T., Suinesiaputra, A. (eds.) STACOM 2019. LNCS, vol. 12009, pp. 209–219. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39074-7_22

    Chapter  Google Scholar 

  19. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  20. Li, F., Li, W., Shu, Y., Qin, S., Xiao, B., Zhan, Z.: Multiscale receptive field based on residual network for pancreas segmentation in CT images. Biomed. Signal Process. Control 57, 101828 (2020)

    Article  Google Scholar 

  21. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: GhostNet: more features from cheap operations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1580–1589 (2020)

    Google Scholar 

  22. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  23. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  24. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Nos. 61972060 and U1713213], National Science & Technology Major Project [2016YFC1000307-3], Natural Science Foundation of Chongqing [cstc2019cxcyljrc-td0270, cstc2019jcyj-cxttX0002, cstc2019jcyj-zdxmX0011].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weisheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, W., Wang, L., Qin, S. (2020). CMS-UNet: Cardiac Multi-task Segmentation in MRI with a U-Shaped Network. In: Zhuang, X., Li, L. (eds) Myocardial Pathology Segmentation Combining Multi-Sequence Cardiac Magnetic Resonance Images. MyoPS 2020. Lecture Notes in Computer Science(), vol 12554. Springer, Cham. https://doi.org/10.1007/978-3-030-65651-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65651-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65650-8

  • Online ISBN: 978-3-030-65651-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics