Skip to main content

Stacked and Parallel U-Nets with Multi-output for Myocardial Pathology Segmentation

  • Conference paper
  • First Online:
Myocardial Pathology Segmentation Combining Multi-Sequence Cardiac Magnetic Resonance Images (MyoPS 2020)

Abstract

In the field of medical imaging, many different image modalities contain different information, helping practitionners to make diagnostic, follow-up, etc. To better analyze images, mixing multi-modalities information has become a trend. This paper provides one cascaded UNet framework and uses three different modalities (the late gadolinium enhancement (LGE) CMR sequence, the balanced- Steady State Free Precession (bSSFP) cine sequence and the T2-weighted CMR) to complete the segmentation of the myocardium, scar and edema in the context of the MICCAI 2020 myocardial pathology segmentation combining multi-sequence CMR Challenge dataset (MyoPS 2020). We evaluate the proposed method with 5-fold-cross-validation on the MyoPS 2020 dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/MyoPS20/index.html.

References

  1. Abraham, N., Khan, N.M.: A novel focal Tversky loss function with improved attention U-Net for lesion segmentation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 683–687. IEEE (2019)

    Google Scholar 

  2. Eaton-Rosen, Z., Bragman, F., Ourselin, S., Cardoso, M.J.: Improving data augmentation for medical image segmentation (2018)

    Google Scholar 

  3. Guo, Z., Li, X., Huang, H., Guo, N., Li, Q.: Medical image segmentation based on multi-modal convolutional neural network: study on image fusion schemes. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 903–907. IEEE (2018)

    Google Scholar 

  4. Guo, Z., Li, X., Huang, H., Guo, N., Li, Q.: Deep learning-based image segmentation on multimodal medical imaging. IEEE Trans. Radiat. Plasma Med. Sci. 3(2), 162–169 (2019)

    Article  Google Scholar 

  5. Hashemi, S.R., Salehi, S.S.M., Erdogmus, D., Prabhu, S.P., Warfield, S.K., Gholipour, A.: Asymmetric loss functions and deep densely-connected networks for highly-imbalanced medical image segmentation: application to multiple sclerosis lesion detection. IEEE Access 7, 1721–1735 (2018)

    Article  Google Scholar 

  6. Hussain, Z., Gimenez, F., Yi, D., Rubin, D.: Differential data augmentation techniques for medical imaging classification tasks. In: AMIA Annual Symposium Proceedings, vol. 2017, p. 979. American Medical Informatics Association (2017)

    Google Scholar 

  7. Kervadec, H., Bouchtiba, J., Desrosiers, C., Granger, E., Dolz, J., Ayed, I.B.: Boundary loss for highly unbalanced segmentation. In: International Conference on Medical Imaging with Deep Learning, pp. 285–296 (2019)

    Google Scholar 

  8. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  9. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  10. Puybareau, É., et al.: Left atrial segmentation in a few seconds using fully convolutional network and transfer learning. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 339–347. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_37

    Chapter  Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Shin, H.-C., et al.: Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) SASHIMI 2018. LNCS, vol. 11037, pp. 1–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00536-8_1

    Chapter  Google Scholar 

  13. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  14. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8543–8553 (2019)

    Google Scholar 

  15. Zhao, Z., Boutry, N., Puybareau, É., Géraud, T.: A two-stage temporal-like fully convolutional network framework for left ventricle segmentation and quantification on MR images. In: Pop, M., et al. (eds.) STACOM 2019. LNCS, vol. 12009, pp. 405–413. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39074-7_42

    Chapter  Google Scholar 

  16. Zhuang, X.: Multivariate mixture model for cardiac segmentation from multi-sequence MRI. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 581–588. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_67

    Chapter  Google Scholar 

  17. Zhuang, X.: Multivariate mixture model for myocardial segmentation combining multi-source images. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 2933–2946 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Z., Boutry, N., Puybareau, É. (2020). Stacked and Parallel U-Nets with Multi-output for Myocardial Pathology Segmentation. In: Zhuang, X., Li, L. (eds) Myocardial Pathology Segmentation Combining Multi-Sequence Cardiac Magnetic Resonance Images. MyoPS 2020. Lecture Notes in Computer Science(), vol 12554. Springer, Cham. https://doi.org/10.1007/978-3-030-65651-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65651-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65650-8

  • Online ISBN: 978-3-030-65651-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics